J. Li et al. / Tetrahedron Letters 49 (2008) 2761–2763
2763
7. (a) Li, J. Z.; Zhang, Z. F.; Fan, E. Tetrahedron Lett. 2004, 45, 1267–
1269; (b) Li, J. Z.; Zhang, G. T.; Zhang, Z. S.; Fan, E. J. Org. Chem.
2003, 68, 1611–1614.
8. (a) Zhang, Z. S.; Pickens, J. C.; Fan, E. Org. Lett. 2004, 6, 1377–1380;
(b) Flemer, S.; Madalengoitia, J. S. Synthesis 2007, 12, 1848–1860.
9. (a) PonSinet, R.; Chassaing, G.; Lavielle, S. Tetrahedron: Asymmetry
1998, 9, 865–871; (b) Bower, J. F.; Williams, J. M. J. Synlett 1996,
685–686.
sources in comparison to a,b-unsaturated ketones or
methyl acrylate. Furthermore, substituted group variations
can be introduced directly to b-amino acid through N-
alkylation reaction, and the existence of N-substituted
group from reductive amination may enhance the intra-
molecular cyclization process. This synthetic methodology
is in principle suitable for large scale synthesis.
10. (a) Thompson, C. M.; Frick, J. A.; Green, D. L. C. J. Org. Chem.
1990, 55, 111–116; (b) Santagada, V.; Frecentese, F.; Perissutti, E. J.
Comb. Chem. 2005, 7, 618–621.
Acknowledgements
11. A representative procedure is given here. For compound 3b, the
corresponding N-alkylated b-amino acid ester 2b (1.25 mmol) was
added to thiourea 1a (0.5 mmol) dissolved in a solution mixture of
DMF/THF (1:4 2.5 mL) followed by the Mukaiyama reagent
(1.25 mmol), and the reaction mixture was stirred for 2 h at room
temperature. Solvent was removed under vacuum and then 10 mL
water was added. The residue was extracted with DCM (20 mL ꢀ 2).
Then the combined organic layer was dried over MgSO4, filtered and
concentrated in vacuo. The crude product was purified by flash
chromatography on silica (300–400 mesh, EtOAc/petroleum ether) to
give white solid 3b in 94% yield. 1H NMR (CDCl3, 300 MHz). d
(ppm): 7.29–7.27 (m, 3H), 7.18–7.16 (m, 2H), 6.80 (s, 1H), 4.47 (s,
2H), 4.09 (t, J = 7.2 Hz, 2H), 3.47 (t, J = 6.9, 2H), 3.17 (m, 2H), 2.95
(s, 2H), 2.57 (s, 3H), 2.54 (t, J = 6.9, 2H), 2.51 (s, 3H), 2.08 (s, 3H),
0.90 (t, J = 7.35, 3H). 13C NMR (CDCl3, 75 MHz). d (ppm): 171.81,
160.06, 158.65, 138.40, 136.57, 132.36, 128.73, 127.63, 127.35, 124.50,
117.40, 86.34, 60.76, 53.19, 45.99, 44.34, 43.19, 32.33, 28.54, 19.87,
19.25, 18.04, 14.12, 13.65, 12.38.
This work is supported by the Scientific Research foun-
dation for the Returned Overseas Chinese Scholars, State
Education Ministry, PR China.
References and notes
1. (a) Hughes, J. L.; Liu, R. C.; Enkoji, T. J. Med. Chem. 1975, 18,
1077–1088; (b) Buschauer, A. J. Med. Chem. 1989, 32, 1963–1970; (c)
Mckay, A. F.; Garmaise, D. L.; Paris, G. Y. J. Med. Chem. 1963, 6,
587–595; (d) Larsen, S. D.; Connell, M. A.; Cudahy, M. M. J. Med.
Chem. 2001, 44, 1217–1230; (e) Rachlin, S.; Bramm, E.; Martelli, E.
A. J. Med. Chem. 1980, 23, 13–20.
2. (a) Goldberg, P. B.; Kao, C. Y. J. Pharmacol. Exp. Ther. 1973, 186,
569–578; (b) Bose, S. D.; Fatima, L.; Mereyala, H. B. J. Org. Chem.
2003, 68, 587–590; (c) Kappe, C. O. Acc. Chem. Res. 2000, 33, 879–
888; (d) Modha, J.; Datta, N.; Parekh, H. Il Farmaco 2001, 56, 641;
(e) Kochubey, V. S.; Rodin, O. G.; Perevalov, V. P. Chem. Heterocycl.
Compd. 2006, 42, 897–900.
3. (a) Kim, Y. H.; Brown, G. B.; Mosher, H. S., et al. Science 1975, 189,
151–152; (b) Schantz, E. J.; Lynch, J. M.; Vayvada, G. Biochemistry
1966, 5, 1191–1195.
4. (a) Fink, K.; Henderson, R. B.; Fink, R. M. J. Biol. Chem. 1952, 197,
441–452; (b) Campbell, L. L. J. Biol. Chem. 1957, 227, 693–700; (c)
Caravaca, J.; Grisolia, S. J. Biol. Chem. 1958, 231, 357–365; (d) Batt,
R. D.; Martin, J. K.; Ploeser, J. M.; Murray, J. J. Am. Chem. Soc.
1954, 76, 3663–3665; (e) Zee-Cheng, K. Y.; Robins, R. K.; Cheng, C.
C. J. Org. Chem. 1961, 26, 1877–1884.
For compound 4b, compound 3b (0.35 mmol) was added into a
mixture of TFA/H2O (95:5 2 mL), and stirred for 24 h at room
temperature, the solvent was removed under vacuum and then Et3N
was dropped into the residue until pH 8–9 checked by pH paper, and
the crude product was purified by column chromatography on silica
gel (300–400 mesh EtOAc/EtOH) to give white solid 4b in 86% yield.
ESI-MS (m/z) 260.2 ([M+H]+). 1H NMR (CDCl3, 300 MHz). d
(ppm): 7.44–7.42 (m, 3H), 7.25–7.23 (m, 2H), 4.52 (s, 2H), 3.61 (t,
J = 6.9 Hz, 2H), 3.41 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 6.9 Hz, 2H),
1.42 (m, 2H), 1.19 (m, 2H), 0.85 (t, J = 7.2, 3H). 13C NMR (CDCl3,
75 MHz). d (ppm): 176.82, 158.87, 134.94, 129.35, 128.31, 126.24,
109.72, 53.68, 47.64, 41.47, 31.70, 31.58, 19.74, 13.66.
12. Following the literature reported route (Ref. 9a), N-Boc protected
5. (a) Brown, E. B.; Johnson, T. B. J. Am. Chem. Soc. 1924, 46, 702–708;
(b) Evans, J.; Johnson, T. B. J. Am. Chem. Soc. 1930, 52, 4993; (c)
Johnson, T. B.; Livak, J. E. J. Am. Chem. Soc. 1936, 58, 299; (d) Zee-
Cheng, K. Y.; Robins, R. K.; Cheng, C. C. J. Org. Chem. 1961, 26,
1877–1884.
6. (a) Kim, Y. H.; Yoon, C. M.; Lee, N. J. Heterocycles 1981, 16, 49–52;
(b) Kim, Y. H.; Lee, N. J. Heterocycles 1983, 20, 1769–1772; (c) Kim,
Y. H.; Kim, H. R. Heterocycles 1986, 24, 3023–3026.
20
(R)-(+)-2-phenyl-3-aminopropanoic acid was obtained with ½aꢁD
20
+66.4 (c 0.247, CHCl3), which has 75% ee based on Ref. 9b (½aꢁD
+88 (c 1.25, CHCl3)). Using this non-racemic sample, (R)-(+)-2f was
20
subsequently obtained with ½aꢁD +60.2 (c 0.166, CHCl3); (R)-(+)-3m:
20
20
½aꢁD +50.0 (c 0.204, CHCl3); and (R)-(+)-4m: ½aꢁD +58.2 (c 0.175,
CHCl3). This clearly indicates that no significant racemization
occurred during the transformation from 2f to 4m.