via a 1,3-disubstituted allenyl intermediate i (eq 1).2 Ac-
cordingly, we aimed at the analogous 1,1,3-trisubstituted
allenyl intermediates en route to 1,3-disubstituted N-fused
heterocyclic cores. Likely, these reactive allenyl intermediates
8 can be generated in situ via the SN2′-substitution4 of the
corresponding propargyl esters 5 (eq 4).
Table 1. Optimization of Reaction Conditions
run
[CuR]a
LG
OMs
OMs
OMs
OMs
OMs
OAc
solvent
Et2O
Et2O
THF
Et2O
THF
THF
THF
yield %b
1
2
3
4
5
6
7
8
9
s-Bu(Me)Cu(CN)Li2
n-Bu2Cu(CN)Li2
Me2Cu(CN)Li2
MeCu(CN)Li
MeCu(CN)Li
MeCu(CN)Li
MeCu(CN)Li
MeCu(CN)Li
MeCu(CN)Li
11
traces
0
8
90
21
16
0
We chose to employ the organocopper nucleophiles,5
based on the reasoning that, potentially, the copper reagent
(or the copper byproduct) can also mediate the subsequent
cycloisomerization step of V into the heterocycle 6, thus
playing a “double duty” in this transformation.6
OTFA
OC(O)OEt THF
OP(O)OEt2 THF
27
10 MeCu(CN)Li
11 MeCu(CN)Li
12 MeCu(CN)Li
13 Ph2Cu(CN)Li2
OTf
THF
THF
THF
Et2O
Et2O-THF
Et2O
THF
5
OBs
ONs
OMs
traces
traces
traces
9
0
71
To this end, a possible substitution/cycloisomerization
cascade of pyridyl-containing propargyl alcohol derivatives
5 with various copper reagents7 has been examined (Table
1). It was found that the higher order alkyl cuprate reagents
were not efficient in this transformation (entries 1-3). In
contrast, the lower order cyanocuprate (MeCu(CN)Li) reacted
with mesylate 5 very smoothly, affording the C-1 alkylated
indolizine derivative 6a in 90% yield (entry 5)! Attempts to
14 Ph2Cu(CN)Li2/BF3·Et2O OMs
15 PhCu(CN)Li
OMs
OMs
16 PhCuc
a Reactions were carried out with 1.0 mmol of 5 and 1.2 mmol of copper
reagent at -78 °C for 1 h, then at rt for 1 h. b Isolated yield. c Prepared by
mixing PhMgBr with CuBr•SMe2 complex.
substitute mesylate with another leaving group8 were not
successful (entries 6-12).
(1) For recent reviews, see: (a) Fu¨rstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410. (b) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. ReV. 2004, 104, 3079. (c) Nakamura, I.; Yamamoto, Y. Chem. ReV.
2004, 104, 2127.
Short optimization indicated that employment of a phenyl
copper reagent was resonably efficient for the construction
of C-1 phenyl-substituted indolizine 6 (entry 16). Importantly,
in all cases, the corresponding allenes 8 were detected at
early stages of the reaction, thus confirming for the first time
that the cycloisomerizations of propargyl imines, indeed,
proceed via allenic intermediates i2,3 (eq 1) and 8 (eq 4).
Next, the generality of the substitution/cycloisomerization
cascade of differently substituted propargyl mesylates 5 was
examined (Table 2). Thus, secondary alkyl-susbtituted me-
sylates 5a and 5b underwent smooth cyclization upon
treatment with primary (7a-c), secondary (7d), and tertiary
(7e) lower order cyanocuprates to produce the corresponding
indolizines 6 in good to excellent yields (Table 2, entries
1-7). Noteworthy, primary mesylate 5d can also be em-
ployed in this reaction, giving access to monosubstituted
indolizine 6ga, a heterocycle, which can be further elaborated
at C-3 via a direct C-H functionalization protocol.9 The
secondary aryl-substituted mesylates 5e-i were also efficient
in this cyclization, producing C-3 arylated indolizines in good
yields. Notably, ester (entry 10), chloro (entry 11), cyano
(entry 12), and nitro (entry 13) functionalities were perfectly
(2) (a) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc.
2001, 123, 2074. (b) Kim, J. T.; Butt, J.; Gevorgyan, V. J. Org. Chem.
2004, 69, 5638. (c) Kim, J. T.; Gevorgyan, V J. Org. Chem. 2005, 70,
2054. (d) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.;
Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
(3) (a) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128,
12050. (b) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007,
9, 3433. (c) Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org.
Lett. 2007, 9, 1169. (d) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547.
(e) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem. 2007,
72, 7783. (f) Kim, J.; Choi, H. K.; Won, G.; Lee, H. Tetrahedron Lett.
2007, 48, 6863.
(4) For a general review, see: (a) Krause, N.; Hashmi, S. K. Modern
Allene Chemistry; Wiley-VCH: Weinheim, Germany, 2004; p 1143. See
also: (b) Krause, N.; Hoffmann-Roeder, A. Tetrahedron 2004, 60, 11671.
(c) Krause, N.; Hoffmann-Roeder, A. Angew. Chem., Int. Ed. 2002, 41,
2933.
(5) For recent examples on synthesis of allenes using copper reagents
via SN2′ substitution approach, see: (a) Saito, A.; Kanno, A.; Hanzawa, Y.
Angew. Chem., Int. Ed. 2007, 46, 3931. (b) Ghosh, P.; Lotesta, S. D.;
Williams, L. J. J. Am. Chem. Soc. 2007, 129, 2438. (c) Dieter, R. K.; Chen,
N.; Gore, V. K. J. Org. Chem. 2006, 71, 8755. (d) Pacheco, M. C.;
Gouverneur, V. Org. Lett. 2005, 7, 1267. (e) Dieter, R. K.; Chen, N.; Yu,
H.; Nice, L. E.; Gore, V. K. J. Org. Chem. 2005, 70, 2109. (f) Rega´s, D.;
Afonso, M. M.; Rodr´ıguez, M. L.; Palenzuela, J. A. J. Org. Chem. 2003,
68, 7845. (g) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3, 3855.
(6) For copper-mediated cascade transformations, see for example: (a)
Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6,
1573. (b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org.
Chem. 2007, 72, 3896.
(7) For general reviews on copper reagents, see: (a) Lipshutz, B. H. In
Organometallics in Synthesis: A Manual; Schlosser, M., Ed.; Wiley-VCH:
Weinheim, Germany, 1994; pp 283-376. (b) Krause, N. Modern Orga-
nocopperChemistry; Wiley-VCH: Weinheim, Germany, 2002. (c) Caprio,
V. Lett. Org. Chem. 2006, 3, 339. (d) Nakamura, E.; Seiji, M. Angew. Chem.,
Int. Ed. 2000, 39, 3750. (e) Woodward, S. Chem. Soc. ReV. 2000, 29, 393.
(f) Krause, N.; Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 186. (g)
Taylor, R. J. K.; Casy, G. In Organocopper Reagents-A Practical
Approach; Taylor, R. J. K., Ed.; Oxford University Press: New York, 1994.
(8) It was also recently reported by Krause that the lower order
cyanocuprates provide high selectivity in SN2′-substitution reaction employ-
ing propargyl acetates. See: (a) Jansen, A.; Krause, N. Inorg. Chem. Acta
2006, 359, 1761. (b) Jansen, A.; Krause, N. Synthesis 2002, 1987.
(9) For a review, see: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. ReV.
2007, 36, 1173. For a direct arylation of indolizines, see: (b) Park, C.-H.;
Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004,
6, 1159. For a direct alkynylation of indolizines, see: (c) JSeregin, I. V.;
Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742.
2308
Org. Lett., Vol. 10, No. 11, 2008