of this design principle, we describe a novel family of
saccharide/ꢀ-lactam hybrids for lectin inhibition.
have shown increased activity and good selectivity against
several lectin receptors.6 Unfortunately, excessive flexibility
of the peptide backbone, biodegradability arising from
glycosidic or peptidic linkages, and epimerization of the
R-carbons are important drawbacks of this approach. Seeking
for peptidomimetics with more favorable pharmacodynamic
profiles, we have been focused over the past few years on
the design and synthesis of peptidomimetics based on
R-branched-R-amino-ꢀ-lactam scaffolds7 which are expected
to exhibit rigidified backbones and simultaneous enhanced
resistance to chemical and enzymatic hydrolysis by proteases
owing to the presence of the R,R-disubstitution pattern at
the azetidin-2-one ring. Now, we report the synthesis of
saccharide/ꢀ-lactam hybrids 3 incorporating the 1,2,3-tria-
zolylmethyl moiety8 as the shape-modulating linker.
Lectins2 are naturally occurring nonenzymatic saccharide-
binding proteins. They are involved in a variety of recogni-
tion events, including cell-cell interactions. For instance,
selectins3 gained attention a decade ago, when it was
demonstrated that the adhesion of the tetrasaccharide sia-
lylLewis-x (sLeX) 1 (Figure 2)4 to the carbohydrate-recogni-
Scheme 1. Retrosynthesis of Saccharide ꢀ-Lactam Hybrids 3
Retrosynthetically (Scheme 1), compounds 3 were discon-
nected at the 1,2,3-triazole ring and divided into the readily
available glycosyl azides 59 and R-(o-nosylamino)-R-prop-
argyl-ꢀ-lactam 4. The synthesis of the latter was planned
from the R-propargylserinate 6 and aminoester 7, according
to the procedure developed in our laboratory.7b
Figure 2. Design of Ser-Glu dipeptide-based mimetics 2 using the
interaction pattern of sLex 1 with E-Selectin (top). “Shape-
modulating linker”/ꢀ-lactam approach to semirigid saccharide/ꢀ-
lactam hybrids 3 (bottom).
(6) Tsukida, T.; Moriyama, H.; Kurokawa, K.; Achiha, T.; Inoue, Y.;
Kondo, H. H. J. Med. Chem. 1998, 41, 4279–4287.
(7) (a) Palomo, C.; Aizpurua, J. M.; Benito, A.; Miranda, J. I.; Fratila,
R. M.; Matute, C.; Domercq, M.; Gago, F.; Martin-Santamaria, S.; Linden,
A. J. Am. Chem. Soc. 2003, 125, 16243–16260. (b) Palomo, C.; Aizpurua,
J. M.; Balentova´, E.; Jime´nez, A.; Oyarbide, J.; Fratila, R.; Miranda, J. I.
Org. Lett. 2007, 9, 101–104.
tion domain (CRD) of E-selectin regulated the rolling,
tethering and transmigration of leukocytes on the vascular
endothelium. Irregular and excessive infiltration of leukocytes
is at the origin of acute and chronic inflammatory diseases
such as asthma, psoriasis, and rheumatoid arthritis.5
Low molecular weight carbohydrate-peptide mimetics
related to ꢀ-turned Ser-Glu dipeptide O-glycoside hybrids 2
(8) This heterocycle is readily accessible by the copper-catalyzed
azide-alkyne “click” cycloaddition reaction: (a) Kolb, H. C.; Finn, M. G.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021. For the use
of glycosyl azides in “click” reactions, see: (b) Dedola, S.; Nepogodiev,
S. A.; Field, R. A. Org. Biomol. Chem. 2007, 5, 1006–1017. (c) Kuijpers,
B. H. M.; Groothuys, S.; Keereweer, A. R.; Quaedflied, P. J. L. M.; Blaauw,
R. H.; Delft, F. L.; Rutjes, F. P. J. T. Org. Lett. 2004, 6, 3123–3126. (d)
Chittaboina, S.; Xie, F.; Wang, Q. Tetrahedron Lett. 2005, 46, 2331–2336.
(e) Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.;
Supuran, C. T.; Poulsen, S.-A. J. Med. Chem. 2006, 49, 6539–6548. For
related multivalent saccharides rigidified using click reactions, see: (f)
Vrasidas, I.; Andre´, S.; Valentini, P.; Bo¨ck, C.; Lensch, M.; Kaltner, H.;
Liskamp, R. M. J.; Gabius, H.-J.; Pieters, R. J. Org. Biomol. Chem. 2003,
1, 803–810. (g) Salameh, B.; Leffler, H.; Nilsson, U. J. Bioorg. Med. Chem.
Lett. 2005, 15, 3344–3346. (h) Touaibia, M.; Wellens, A.; Shiao, T. C.;
Wang, Q.; Sirois, S.; Bouckaert, J.; Roy, R. Chem. Med. Chem. 2007, 2,
1190–1201.
(2) Lis, H.; Sharon, N. Chem. ReV. 1998, 98, 637–674.
(3) Simanek, E.; McGarvey, G.; Jablonowski, J.; Wong, C. Chem. ReV.
1998, 98, 833–862.
(4) (a) Somers, W.; Tang, J.; Shaw, G.; Camphausen, R. Cell 2000,
103, 467–479. (b) Kranich, R.; Busemann, A. S.; Bock, D.; Schroeter-Maas,
S.; Beyer, D.; Heinemann, B.; Meyer, M.; Schierhorn, K.; Zahtten, R.; Wolf,
G.; Aydt, E. M. J. Med. Chem. 2007, 50, 1101–1115, (and references
therein)
(9) (a) Kunz, H.; Pfrengle, W.; Ruck, K.; Sager, W. Synthesis 1991,
103, 9–1042. (b) Gyorgydeak, Z.; Paulsen, H.; Szilagyi, L. J. Carb. Chem.
1993, 12, 139–163. (c) Bojarova, P.; Petraskova, L.; Ferrandi, E. E.; Monti,
D.; Pelantova, H.; Kuzma, M.; Simerska, P.; Kren, V. AdV. Synth. Catal.
2007, 349, 1514–1520.
(5) For reviews, see: (a) Carbohydrate-based Drug DiscoVery; Wong,
C.-H., Ed.; Wiley-VCH: Weinheim, 2003. (b) Romano, S. J. Treat. Respir.
Med. 2005, 4, 85–94.
2228
Org. Lett., Vol. 10, No. 11, 2008