Communication
ChemComm
(e) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
( f ) H. M. L. Davies, J. Du Bois and J.-Q. Yu, Chem. Soc. Rev., 2011,
40, 1855; (g) T. Bru¨ckl, R. D. Baxter, Y. Ishihara and P. S. Baran, Acc.
Chem. Res., 2012, 45, 826; (h) H. M. L. Davies and D. Morton, J. Org.
Chem., 2016, 81, 343. See also, highlight on visible-light photocata-
lysis: X.-Q. Hu, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed.,
2017, 56, 1960.
7 For recent reviews on internal redox processes, see: (a) M. Tobisu
and N. Chatani, Angew. Chem., Int. Ed., 2006, 45, 1683; (b) M. Wang,
ChemCatChem, 2013, 5, 1291; (c) B. Peng and N. Maulide, Chem. –
Eur. J., 2013, 19, 13274; (d) L. Wang and J. Xiao, Adv. Synth. Catal.,
2014, 356, 1137; (e) M. C. Haibach and D. Seidel, Angew. Chem., Int.
Ed., 2014, 53, 5010; ( f ) S. J. Kwon and D. Y. Kim, Chem. Rec., 2016,
16, 1191; (g) M. Xiao, S. Zhu, Y. Shen, L. Wang and J. Xiao, Chin.
J. Org. Chem., 2018, 38, 328.
8 For the internal redox reaction developed by our group, see:
(a) K. Mori, Y. Ohshima, K. Ehara and T. Akiyama, Chem. Lett.,
2009, 38, 524; (b) K. Mori, T. Kawasaki, S. Sueoka and T. Akiyama,
Org. Lett., 2010, 12, 1732; (c) K. Mori, S. Sueoka and T. Akiyama, J. Am.
Chem. Soc., 2011, 133, 2424; (d) K. Mori, S. Sueoka and T. Akiyama,
Chem. Lett., 2011, 40, 1386; (e) K. Mori, K. Ehara, K. Kurihara and
T. Akiyama, J. Am. Chem. Soc., 2011, 133, 6166; ( f ) K. Mori,
T. Kawasaki and T. Akiyama, Org. Lett., 2012, 14, 1436; (g) K. Mori,
K. Kurihara and T. Akiyama, Chem. Commun., 2014, 50, 3729;
(h) K. Mori, N. Umehara and T. Akiyama, Adv. Synth. Catal., 2015,
357, 901; (i) T. Yoshida and K. Mori, Chem. Commun., 2017, 53, 4319;
( j) M. Machida and K. Mori, Chem. Lett., 2018, 47, 868; (k) K. Yokoo
and K. Mori, Chem. Commun., 2018, 54, 6927; (l) N. Hisano, Y. Kamei,
J. Z. Long and D. Sames, Org. Lett., 2009, 11, 2972; (h) I. D. Jurberg,
¨
B. Peng, E. Wostefeld, M. Wasserloos and N. Maulide, Angew. Chem., Int.
Ed., 2012, 51, 1950; (i) Y.-Y. Han, W.-Y. Han, X.-M. Zheng and W.-C. Yuan,
Org. Lett., 2012, 14, 4054; ( j) P. A. Vadpla, I. Carrea and D. Sames, J. Org.
Chem., 2012, 77, 6689; (k) X. Gao, V. Gaddam, E. Altenhofer, R. R. Tata,
Z. Cai, N. A. Yongpruksa, K. Garimallaprabhakaran and M. Harmata,
Angew. Chem., Int. Ed., 2012, 51, 7016; (l) D.-F. Chen, Z.-Y. Han, Y.-P. He,
J. Yu and L.-Z. Gong, Angew. Chem., Int. Ed., 2012, 51, 12307;
(m) K. Eamakumar, T. Maji, J. J. Partridge and J. A. Tunge, Org. Lett.,
2017, 19, 4014; (n) S. Wang, X. D. An, S. S. Li, X. Liu, Q. Liu and J. Xiao,
Chem. Commun., 2018, 54, 13833; (o) S.-S. Li, S. Zhu, C. Chen, K. Duan,
Q. Liu and J. Xiao, Org. Lett., 2019, 21, 1058; (p) S. Zhao, X. Wang,
P. Wang, G. Wang, W. Xhao, X. Tang and M. Guo, Org. Lett., 2019,
21, 3990; (q) A. Paul and D. Seidel, J. Am. Chem. Soc., 2019, 141, 8778.
12 For examples of the enantioselective internal redox reactions, see:
(a) S. Murarka, I. Deb, C. Zhang and D. Seidel, J. Am. Chem. Soc., 2009,
131, 13226; (b) Y. K. Kang, S. M. Kim and D. Y. Kim, J. Am. Chem. Soc.,
2010, 132, 11847; (c) W. Cao, X. Liu, W. Wang, L. Lin and X. Feng, Org.
Lett., 2011, 13, 600; (d) G. Zhou, F. Liu and J. Zhang, Chem. – Eur. J.,
2011, 17, 3101; (e) Y.-P. He, Y.-L. Du, S.-W. Luo and L. Z. Gong,
Tetrahedron Lett., 2011, 52, 7064; ( f ) L. Chen, L. Zhang, Z. Lv,
J.-P. Cheng and S. Luo, Chem. – Eur. J., 2012, 18, 8891; (g) Z.-W. Jiao,
S.-Y. Zhang, C. He, Y.-Q. Tu, S.-H. Wang, F.-M. Zhang, Y.-Q. Zhang and
H. Li, Angew. Chem., Int. Ed., 2012, 51, 8811; (h) Y. K. Kang and
D. Y. Kim, Adv. Synth. Catal., 2013, 355, 3131; (i) Y. K. Kang and D. Y.
Kim, Chem. Commun., 2014, 50, 222; ( j) C. W. Suh and D. Y. Kim, Org.
Lett., 2014, 16, 5374; (k) W. Cao, X. Liu, J. Guo, L. Lin and X. Feng,
Chem. – Eur. J., 2015, 21, 1632. See also, ref. 8e and 9c.
Y. Kansaku, M. Yamanaka and K. Mori, Org. Lett., 2018, 20, 4223; 13 For examples of the internal redox reactions for the formation of
(m) T. Yoshida and K. Mori, Chem. Commun., 2018, 54, 12686;
(n) R. Tamura, E. Kitamura, R. Tustsumi, M. Yamanaka, T. Akiyama
and K. Mori, Org. Lett., 2019, 21, 2383.
five-membered heterocycles, see: (a) D. N. Reinhoudt, G. W. Visser,
W. Verboom, P. H. Benders and M. L. M. Pennings, J. Am. Chem.
Soc., 1983, 105, 4775; (b) W. Verboom, D. N. Reinhoudt, R. Visser
and S. Harkema, J. Org. Chem., 1984, 49, 269; (c) B. De Boeck,
S. Jiang, Z. Janousek and H. G. Viehe, Tetrahedron, 1994, 50, 7075;
(d) B. De Boeck, Z. Janousek and H. G. Viehe, Tetrahedron, 1995,
51, 13239; (e) X. Che, L. Sheng, Q. Dang and X. Bai, Synlett, 2008,
2373; ( f ) S. Yang, Z. Li, X. Jian and C. He, Angew. Chem., Int. Ed.,
2009, 48, 3999; (g) P. A. Vadola and D. Sames, J. Am. Chem. Soc.,
2009, 131, 16525; (h) M. Alajarin, M. Martin-Luna and A. Vidal, Adv.
Synth. Catal., 2011, 353, 557; (i) A. P. Gorulya, A. V. Tverdokhlebov,
A. A. Tolmachev, O. V. Shishkin and S. V. Shinshikina, Tetrahedron,
2011, 67, 1030. See also, ref. 8l and 9a.
9 For the double C(sp3)–H bond functionalization by sequential
utilization of the internal redox reaction developed by our group,
see: (a) K. Mori, K. Kurihara, S. Yabe, M. Yamanaka and T. Akiyama,
J. Am. Chem. Soc., 2014, 136, 3744; (b) K. Mori, N. Umehara and
T. Akiyama, Chem. Sci., 2018, 9, 7327; (c) K. Mori, R. Isogai,
Y. Kamei, M. Yamanaka and T. Akiyama, J. Am. Chem. Soc., 2018,
140, 6203.
10 These types of reactions are classified as ‘‘tert-amino effect.’’ For
reviews, see: (a) O. Meth-Cohn and H. Suschitzky, Adv. Heterocycl.
Chem., 1972, 14, 211; (b) W. Verboom and D. N. Reinhoudt, Recl.
Trav. Chim. Pays-Bas, 1990, 109, 311; (c) O. Meth-Cohn, Adv. Hetero- 14 For examples of the internal redox reactions for the formation of
´
´
´
´
¨ ´
seven-membered heterocycles, see: (a) A. A. Foldi, K. Ludanyi,
cycl. Chem., 1996, 65, 1; (d) P. Matyus, O. Elias, P. Tapolcsanyi,
´
´
´
´
´
A. Polonka-Balint and B. Halasz-Dajka, Synthesis, 2006, 2025.
11 For selected examples of the internal redox reactions, see:
(a) S. J. Pastine, K. M. McQuaid and D. Sames, J. Am. Chem. Soc.,
2005, 127, 12180; (b) S. J. Pastine and D. Sames, Org. Lett., 2005,
7, 5429; (c) C. Zhang, C. Kanta De, R. Mal and D. Seidel, J. Am. Chem.
Soc., 2008, 130, 416; (d) C. Zhang, S. Murarka and D. Seidel, J. Org.
A. C. Benyei and P. Matyus, Synlett, 2010, 2109; (b) G. Zhou and
J. Zhang, Chem. Commun., 2010, 46, 6593; (c) Y.-Z. Li, M.-L. Zhao,
W.-F. Chang, X. Wen, H. Sun and Q.-L. Xu, J. Org. Chem., 2015,
80, 9620; (d) C. W. Suh, S. J. Kwon and D. Y. Kim, Org. Lett., 2017,
19, 1334; (e) S.-S. Li, L. Zhou, L. Wang, H. Zhao, L. Yu and J. Xiao,
Org. Lett., 2018, 20, 138. See also, ref. 9a.
Chem., 2009, 74, 419; (e) K. M. McQuaid and D. Sames, J. Am. Chem. 15 CCDC 1953402 contains the supplementary crystallographic data of
Soc., 2009, 131, 402; ( f ) J. C. Ruble, A. R. Hurd, T. A. Johnson, D. A. 4c†.
Sherry, M. Barbachyn, R. P. L. Toogood, G. L. Bundy, D. R. Graber and 16 A. Polonka-Balint, C. Saraceno, K. Ludanyi, A. Benyei and P. Matyus,
´
´
´
´
G. M. Kamilar, J. Am. Chem. Soc., 2009, 131, 3991; (g) K. M. McQuaid,
Synlett, 2008, 2846.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13856--13859 | 13859