Dideoxyamino Carbohydrate Derivatives
a colourless oil. [α]2D2 = +68.9 (c = 0.19, CHCl3). 1H NMR
(500 MHz, CDCl3): δ = 2.00–2.08 (m, 2 H, 2-H), 3.18 (br. s, 1 H,
6-H), 3.42 (br. s, 1 H, NH), 3.79–3.86 (m, 4 H, 1-H, 6-H, OH),
3.82 (d, J = 15.1 Hz, 1 H, NCH2), 4.09 (dd, J = 1.0, 9.8 Hz, 1 H,
6-H), 4.15 (d, J = 15.1 Hz, 1 H, NCH2), 4.18 (br. d, J ≈ 4.8 Hz, 1
H, 4-H), 4.40 (ddd, J = 0.4, 4.8, 9.8 Hz, 1 H, 5-H), 7.25–7.29, 7.31–
7.35 (2 m, 1 H, 4 H, Ph) ppm; 2 OH signals could not be detected.
(10% Pd, 0.192 g) in dry methanol (10 mL) for 1 h. Then a solution
of 14 (0.194 g, 0.60 mmol) in dry methanol (2 mL) was added and
the mixture was stirred under hydrogen (balloon) at normal pres-
sure at room temperature for 26 h. Filtration through a pad of
Celite® and removal of the solvent under vacuum provided 16
[0.142 g, quant., purity Ͼ 95% (1H NMR)] as a colourless foam,
m.p. 54–57 °C. [α]2D2 = +48.4 (c = 1.0, MeOH). 1H NMR (500 MHz,
13C NMR (125 MHz, CDCl3): δ = 34.4 (t, C-2), 59.9 (t, NCH2), CD3OD): δ = 1.96 (ddd, J = 7.0, 7.9, 15.2 Hz, 1 H, 2-H), 2.05 (td,
65.9 (t, C-1), 74.9 (d, C-4), 75.7 (t, C-6), 75.8 (d, C-5), 103.2 (s, C-
3), 127.1, 128.2, 128.3, 137.4 (3 d, s, Ph) ppm. IR (film): ν = 3430–
J = 5.4, 15.2 Hz, 1 H, 2-H), 3.06 (d, J = 4.0 Hz, 1 H, 4-H), 3.20
(s, 3 H, OMe), 3.35 (ddd, J = 2.2, 5.0, 9.6 Hz, 1 H, 7-H), 3.52 (t,
˜
3300 (O–H), 3090–3030 (=C–H), 2940–2875 (C–H) cm–1. MS (EI, J = 9.6 Hz, 1 H, 6-H), 3.58–3.64 (m, 2 H, 1-H), 3.73 (dd, J = 5.0,
80 eV, 100 °C): m/z (%) = 253 (1) [M]+, 106 (76) [C7H8N]+, 91 (100) 11.8 Hz, 1 H, 7-CH2), 3.80 (dd, J = 2.2, 11.8 Hz, 1 H, 7-CH2), 3.89
[CH2Ph]+. HRMS (EI, 80 eV): calcd. for C13H19NO4 [M]+
253.1321; found 253.1336.
(dd, J = 4.0, 9.6 Hz, 1 H, 5-H) ppm. 13C NMR (125 MHz,
CD3OD): δ = 34.5 (t, C-2), 48.0 (q, OMe), 56.7 (d, C-4), 57.7 (t,
C-1), 62.7 (t, 7-CH2), 67.6 (d, C-6), 72.0 (d, C-5), 75.3 (d, C-7),
Synthesis of 14 and 15: pTsCl (0.048 g, 0.25 mmol) and anti-13
(0.203 g, 0.50 mmol) in dry methanol (3 mL each) were treated as
described in GP 1. After quenching with satd. aq. NaHCO3 solu-
tion, water was added until the white precipitate was dissolved,
and the aqueous phase was extracted with dichloromethane (6ϫ
10 mL). Flash chromatography of the residue (silica gel; hexane/
ethyl acetate, 1:3, then 1:4) gave 14 (0.119 g, 73%) as colourless
crystals, m.p. 128–132 °C, and unstable side product 15 (0.014 g,
7%) as colourless crystals.
103.3 (s, C-3) ppm. IR (KBr): ν = 3435 (OH, NH), 2930–2830 (OH,
˜
NH, CH), 1645–1590 (NH) cm–1. MS (pos. ESI): m/z (%): 238 (100)
[M + H]+, 206 (85) [M – MeO]+. HRMS (pos. ESI): calcd. for
C9H20NO6 [M + H]+ 238.1285; found 238.1284. C9H19NO6·1/2H2O
(246.3): calcd. C 43.90, H 8.19, N 5.69; found C 44.01, H 7.98, N
5.47.
Acknowledgments
(4aS,6R,7S,8R,8aS)-1-Benzyl-6-(hydroxymethyl)-4a-methoxyhexa-
hydro-1H,3H-pyrano[3,2-c][1,2]oxazine-7,8-diol (14): [α]2D2 = +74.7
Support of this work by the Deutsche Forschungsgemeinschaft, the
Fonds der Chemischen Industrie and the Schering AG is most
gratefully acknowledged. We thank Dr. R. Zimmer for help during
preparation of the manuscript.
1
(c = 1.0, CHCl3). H NMR (500 MHz, [D6]DMSO): δ = 1.52 (dt,
J = 5.8, 12.5 Hz, 1 H, 4-H), 1.92 (ddd, J = 1.0, 2.1, 12.5 Hz, 1 H,
4-H), 2.92 (d, J = 3.1 Hz, 1 H, 8a-H), 3.19 (s, 3 H, OMe), 3.32
(ddd, J = 1.9, 6.6, 9.4 Hz, 1 H, 6-H), 3.44 (d, J = 15.5 Hz, 1 H,
NCH2), 3.52 (ddd, J = 5.1, 9.4, 10.2 Hz, 1 H, 7-H), 3.53 (ddd, J =
5.9, 6.6, 11.5 Hz, 1 H, 6-CH2), 3.66 (ddd, J = 1.0, 5.8, 11.3 Hz, 1
H, 3-H), 3.74 (ddd, J = 1.9, 5.9, 11.5 Hz, 1 H, 6-CH2), 3.78 (ddd,
J = 2.1, 11.3, 12.5 Hz, 1 H, 3-H), 4.18 (ddd, J = 3.1, 4.6, 10.2 Hz,
1 H, 8-H), 4.47 (t, J = 5.9 Hz, 1 H, 6-CH2OH), 4.92 (d, J = 5.1 Hz,
1 H, 7-OH), 5.11 (d, J = 15.5 Hz, 1 H, NCH2), 5.43 (d, J = 4.6 Hz,
1 H, 8-OH), 7.15–7.19, 7.25–7.31 (2 m, 1 H, 4 H, Ph) ppm. 13C
NMR (125 MHz, [D6]DMSO): δ = 33.9 (t, C-4), 46.9 (q, OMe),
59.5 (t, NCH2), 61.6 (t, 6-CH2OH), 65.6 (t, C-3), 65.8 (d, C-7), 69.4
(d, C-8), 70.1 (d, C-8a), 76.6 (d, C-6), 97.1 (s, C-4a), 126.0, 127.5,
[1] a) W. Schade, H.-U. Reißig, Synlett 1999, 632–634; b) M.
Helms, W. Schade, R. Pulz, T. Watanabe, A. Al-Harrasi, L.
Fisˇera, I. Hlobilová, G. Zahn, H.-U. Reißig, Eur. J. Org. Chem.
2005, 1003–1019; c) R. Pulz, S. Cicchi, A. Brandi, H.-U.
Reißig, Eur. J. Org. Chem. 2003, 1153–1156.
[2] R. Pulz, T. Watanabe, W. Schade, H.-U. Reißig, Synlett 2000,
983–986.
[3] R. Pulz, A. Al-Harrasi, H.-U. Reißig, Synlett 2002, 817–819.
[4] a) A. Al-Harrasi, H.-U. Reißig, Angew. Chem. 2005, 117, 6383–
6387; Angew. Chem. Int. Ed. 2005, 44, 6227–6231; b) F. Pfren-
gle, A. Al-Harrasi, H.-U. Reißig, Synlett 2006, 3498–3500.
[5] A. Al-Harrasi, H.-U. Reißig, Synlett 2005, 2376–2378.
[6] H.-U. Reißig, C. Hippeli, T. Arnold, Chem. Ber. 1990, 123,
2403–2411.
127.8, 140.1 (3 d, s, Ph) ppm. IR (KBr): ν = 3420 (OH), 3085–3030
˜
(=C–H), 2960–2725 (C–H), 1605, 1495 (C=C) cm–1. C16H23NO6
(325.4): calcd. C 59.06, H 7.13, N 4.31; found C 59.06, H 6.96, N
4.25.
[7] R. Zimmer, H.-U. Reißig, Angew. Chem. 1988, 100, 1576–1577;
(4aS,6R,7S,8R,8aS)-1-Benzyl-4a-methoxy-6-[(1-methoxy-1-methyl-
ethoxy)methyl]hexahydro-1H,3H-pyrano[3,2-c][1,2]oxazine-7,8-diol
(15): 1H NMR (500 MHz, CDCl3): δ = 1.41, 1.42 (2 s, 6 H, CMe2),
1.70 (dt, J = 5.8, 12.6 Hz, 1 H, 4-H), 1.93 (ddd, J = 1.2, 2.4,
12.6 Hz, 1 H, 4-H), 2.73, 3.19 (2 br. s, 1 H each, OH), 3.20 (d, J =
3.1 Hz, 1 H, 8a-H), 3.268 (s, 3 H, CMe2OMe), 3.270 (s, 3 H, 4a-
OMe), 3.63 (ddd, J = 4.9, 6.4, 9.1 Hz, 1 H, 6-H), 3.65 (d, J =
15.3 Hz, 1 H, NCH2), 3.70 (dd, J = 6.4, 9.5 Hz, 1 H, 6-CH2), 3.76
(ddd, J = 1.2, 5.8, 11.5 Hz, 1 H, 3-H), 3.81 (dd, J = 4.9, 9.5 Hz, 1
H, 6-CH2), 3.91 (ddd, J = 2.4, 11.5, 12.6 Hz, 1 H, 3-H), 4.01 (dd,
J = 9.1, 10.2 Hz, 1 H, 7-H), 4.51 (dd, J = 3.1, 10.2 Hz, 1 H, 8-H),
5.08 (d, J = 15.3 Hz, 1 H, NCH2), 7.20–7.23, 7.28–7.31, 7.37–7.39
(3 m, 1 H, 2 H, 2 H, Ph) ppm. 13C NMR (125 MHz, CDCl3): δ =
24.31, 24.32 (2 q, CMe2), 34.1 (t, C-4), 47.6 (q, 4a-OMe), 48.8 (q,
CMe2OMe), 60.1 (t, NCH2), 62.9 (t, 6-CH2), 66.3 (t, C-3), 68.9 (d,
C-8a), 69.7 (d, C-7), 70.6 (d, C-8), 72.4 (d, C-6), 97.9 (s, C-4a),
100.6 (s, CMe2), 126.3, 127.7, 128.0, 139.8 (3 d, s, Ph) ppm. Due to
its instability the product could not be analysed by other methods.
Angew. Chem. Int. Ed. Engl. 1988, 27, 1518–1519.
[8] For a review about deoxy sugar synthesis, see: A. Kirschning,
M. Jesberger, K.-U. Schöning, Synthesis 2001, 507–540.
[9] Employing directly hydrochloric acid in methanol furnished
compounds 2 and 3 in inferior yields. Probably, low concentra-
tions of HCl are advantageous for a clean transformation.
[10] a) G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I.
Kerekes, J. A. Olah, J. Org. Chem. 1979, 44, 3872–3881; b)
G. A. Olah, J. G. Shih, G. K. S. Prakash, Fluorine Containing
Reagents in Organic Chemistry in Fluorine: The First Hundred
Years (Eds.: R. E. Banks, D. W. A. Sharp, J. C. Tatlow), Elsev-
ier, New York, 1992, p. 377–381; c) for cleavage of ketals, see:
Y. Watanabe, Y. Kiyosawa, A. Tatsukawa, M. Hayashi, Tetra-
hedron Lett. 2001, 42, 4641–4643.
[11] In solution also only one epimer can be detected by NMR
spectroscopy.
[12] For a non-reductive method, see: A. Al-Harrasi, H.-U. Reißig,
Synlett 2005, 1152–1154.
[13] For the cleavage of N–O bonds with SmI2, see: a) G. E. Keck,
S. F. McHardy, T. T. Wager, Tetrahedron Lett. 1995, 36, 7419–
7422; b) J. L. Chiara, C. Destabel, P. Gallego, J. Marco-
Contelles, J. Org. Chem. 1996, 61, 359–360; c) I. S. Young, J. L.
Methyl 4-Amino-2,4-dideoxy-α-
D-manno-oct-3-ulopyranoside (16):
Hydrogen was bubbled through a stirred suspension of Pd/C
Eur. J. Org. Chem. 2008, 467–474
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
473