3266
V. Strehmel et al. / Tetrahedron Letters 49 (2008) 3264–3267
and the DFG for financial support within the priority
programme SPP 1191.
References and notes
1. Wasserscheid, P.; Keim, W. Angew. Chem. 2000, 112, 3926.
2. Rogers, R. D.; Seddon, K. R. Ionic Liquids Industrial Applications to
Green Chemistry. ACS Symp. Ser. 818; American Chemical Society:
Washington, DC, 2002.
3. Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH:
Weinheim, 2003.
4. Rogers, R. D.; Seddon, K. R.; Kubisa, P. Ionic Liquids as Green
Solvents. ACS Symp. Ser. 856; American Chemical Society: Wash-
ington, DC, 2003.
5. Rogers, R. D.; Brazel, C. S. Ionic Liquids in Polymer Systems. ACS
Symp. Ser. 913; American Chemical Society: Washington, DC, 2005.
6. Ohno, H. Electrochemical Aspects of Ionic Liquids; John Wiley &
Sons: Hoboken, New Jersey, 2005.
7. Wang, J.; Tian, Y.; Zhao, Y.; Zhuo, K. Green Chem. 2003, 5, 618.
8. Noel, M. A. M.; Allendoerfer, R. D.; Osteryoung, R. A. J. Phys.
Chem. 1992, 96, 2391.
9. Kawai, A.; Hidemori, T.; Shibuya, K. Chem. Lett. 2004, 11, 1464.
10. Kawai, A.; Hidemori, T.; Shibuya, K. Chem. Phys. Lett. 2005, 414,
378.
11. Evans, R. G.; Wain, A. J.; Hardacre, C.; Compton, R. G.
ChemPhysChem 2005, 6, 1035.
12. Stoesser, R.; Herrmann, W.; Zehl, A.; Strehmel, V.; Laschewsky, A.
ChemPhysChem 2006, 7, 1106.
13. Strehmel, V.; Laschewsky, A.; Stoesser, R.; Zehl, A.; Herrmann, W.
J. Phys. Org. Chem. 2006, 19, 318.
14. Grampp, G.; Kattnig, D.; Mladenova, B. Spectrochim. Acta A 2006,
63, 821.
15. Stoesser, R.; Herrmann, W.; Zehl, A.; Laschewsky, A.; Strehmel, V.
Z. Phys. Chem. 2006, 220, 1309.
16. Strehmel, V.; Rexhausen, H.; Strauch, P. Tetrahedron Lett. 2008, 49,
586.
17. Keith, A. D.; Snipes, W.; Mehlhorn, R.; Gunter, T. Biophys. J. 1977,
19, 205.
18. Hamada, K.; Iijima, T.; Mc Gregor, R. J. Polym. Sci. Phys. Ed. 1988,
26, 421.
19. Huang, W.; Charleux, B.; Chiarelli, R.; Marx, L.; Rassat, A.; Vairon,
J.-P. Macromol. Chem. Phys. 2002, 203, 1715.
20. Reid, D. A.; Bottle, S. E.; Micallef, A. S. Chem. Commun. 1998, 1907.
21. Aonuma, S.; Casellas, H.; Faulmann, C.; de Bonneval, B. G.;
Malfant, I.; Lacroix, P. G.; Cassoux, P.; Hosokoshi, Y.; Inoue, K.
Synth. Met. 2001, 120, 993.
Fig. 2. ESR spectra of
3
dissolved in (a) dimethylsulfoxide
(Aiso
containing similar anions as the spin probes: (b) 3 in 1-butyl-3-methyl-
imidazolium bistrifluoromethylsulfonylimide (Aiso
14N) = 15.7 G; s =
5.7 ns), (c) 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (Aiso
14N) =
15.8 G; s = 9.9 ns), and (d) 5 in 1-butyl-3-methylimidazolium hexa-
fluorophosphate (Aiso
14N) = 15.4 G; s = 17.2 ns) at room temperature.
(
14N) = 15.5 G; s = 0.7 ns),26,28 and of 3–5 dissolved in ionic liquids
(
(
(
22. For the synthesis of 4-trimethylammonio-2,2,6,6-tetramethylpiper-
idine-1-yloxyl iodide (2), methyliodide from Aldrich (7 ml) is added to
4-amino-2,2,6,6-tetramethylpiperidine-1-yloxyl (1) from Acros
structural elements of ionic liquids. Such spin probes may
be of great interest for the study of ionic liquids. These spin
probes can be tailor made for ionic liquids, and possible
counter ion exchange with the ionic liquid anion can be
avoided. This should simplify the interpretation of results
obtained by the investigation of ionic liquids with spin
probes bearing cationic substituents.
(200 mg) dissolved in
a tert-butylmethylether methanol mixture
(10 ml: 10 ml) and stirred under nitrogen overnight. The 4-trimethyl-
ammonio-2,2,6,6-tetramethylpiperidine-1-yloxyl iodide precipitates
as red precipitate, which is filtered, washed with 10 ml tert-butyl-
methylether, and dried in vacuo (<40 °C, 1 mbar). The 4-trimethyl-
ammonio-2,2,6,6-tetramethylpiperidine-1-yloxyl iodide is obtained
with 28–39% yield (mass spectrometry: 214.2059 Da in the TOF MS
ES+ mode (calcd for C12H26N2O: 214.2045 Da) and 126.9453 Da in
the TOF MS ESÀ mode (calcd for IÀ: 126.9050 Da), mp 244–246 °C
dec determined by the microscopic observation of 2 during heating
and thermogravimetric analysis).
Acknowledgments
23. 4-Trimethylammonio-2,2,6,6-tetramethylpiperidine-1-yloxyl iodide
(100 mg) is stirred in 5 ml acetone under nitrogen at room temper-
ature. Then, a silver salt (113.8 mg silver bistrifluoromethylsulfonyl-
imide (Aldrich), 57 mg silver tetrafluoroborate (Aldrich) or 74.1 mg
silver hexafluorophosphate (Aldrich)) dissolved in 10 ml acetone is
dropped to the 4-trimethylammonio-2,2,6,6-tetramethylpiperidine-1-
yloxyl iodide acetone solution within 15 min. The reaction mixture is
The authors gratefully acknowledge A. Laschewsky for
the use of laboratory equipment, the group of E. Klein-
peter, especially I. Starke and S. Furstenberg from the
¨
University of Potsdam for mass spectrometric investiga-
tion, H. Wetzel from the Fraunhofer Institute for Applied
Polymer Research Potsdam-Golm for elementary analysis,