Page 5 of 6
Journal of the American Chemical Society
C.; Boorman, T. C.; Lu, P.; Larrosa, I., Redox-Controlled Selectivity of C-
Angew. Chem. Int. Ed. 2018, 57, 15762-15766; (f) Mihai, M. T.; Davis, H.
J.; Genov, G. R.; Phipps, R. J., Ion Pair-Directed C–H Activation on Flexi-
ble Ammonium Salts: meta-Selective Borylation of Quaternized Phenethyl-
amines and Phenylpropylamines. ACS Catal. 2018, 8, 3764-3769; (g)
Yang, L.; Uemura, N.; Nakao, Y., meta-Selective C-H Borylation of Ben-
zamides and Pyridines by an Iridium-Lewis Acid Bifunctional Catalyst. J.
Am. Chem. Soc. 2019, 141, 7972-7979; (h) Lee, B.; Mihai, M. T.; Stojalni-
kova, V.; Phipps, R. J., Ion-Pair-Directed Borylation of Aromatic Phospho-
nium Salts. J. Org. Chem. 2019, doi: 10.1021/acs.joc.9b00878.
13. For leading examples of non-catalyzed electrophilic borylation, see:
(a) Bagutski, V.; Del Grosso, A.; Carrillo, J. A.; Cade, I. A.; Helm, M. D.;
Lawson, J. R.; Singleton, P. J.; Solomon, S. A.; Marcelli, T.; Ingleson, M.
J., Mechanistic Studies into Amine-Mediated Electrophilic Arene Boryla-
tion and Its Application in MIDA Boronate Synthesis. J. Am. Chem. Soc.
2013, 135, 474-487; (b) Del Grosso, A.; Ayuso Carrillo, J.; Ingleson, M.
J., Regioselective electrophilic borylation of haloarenes. Chem. Commun.
2015, 51, 2878-2881; (c) Yin, Q.; Klare, H. F. T.; Oestreich, M., Catalytic
Friedel–Crafts C−H Borylation of Electron-Rich Arenes: Dramatic Rate
Acceleration by Added Alkenes. Angew. Chem. Int. Ed. 2017, 56, 3712-
3717.
14. For rhodium-catalyzed silylation which has enhanced sensitivity to
existing sterics, see; Cheng, C.; Hartwig, J. F., Rhodium-Catalyzed Inter-
molecular C–H Silylation of Arenes with High Steric Regiocontrol. Science
2014, 343, 853-857.
15. (a) Saito, Y.; Segawa, Y.; Itami, K., para-C–H Borylation of Ben-
zene Derivatives by a Bulky Iridium Catalyst. J. Am. Chem. Soc. 2015, 137,
5193-5198; (b) Haines, B. E.; Saito, Y.; Segawa, Y.; Itami, K.; Musaev, D.
G., Flexible Reaction Pocket on Bulky Diphosphine–Ir Complex Controls
Regioselectivity in para-Selective C–H Borylation of Arenes. ACS Catal.
2016, 6, 7536-7546.
16. Yang, L.; Semba, K.; Nakao, Y., para-Selective C−H Borylation of
(Hetero)Arenes by Cooperative Iridium/Aluminum Catalysis. Angew.
Chem. Int. Ed. 2017, 56, 4853-4857.
17. Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B., Noncova-
lent Interactions in Ir-Catalyzed C–H Activation: L-Shaped Ligand for
Para-Selective Borylation of Aromatic Esters. J. Am. Chem. Soc. 2017, 139,
7745-7748.
18. (a) Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.;
Maleczka, R. E.; Smith, M. R., A Traceless Directing Group for C-H
Borylation. Angew. Chem. Int. Ed. 2013, 52, 12915-12919; (b) Smith, M.
R.; Bisht, R.; Haldar, C.; Pandey, G.; Dannatt, J. E.; Ghaffari, B.; Maleczka,
R. E.; Chattopadhyay, B., Achieving High Ortho Selectivity in Aniline C–
H Borylations by Modifying Boron Substituents. ACS Catal. 2018, 8, 6216-
6223.
19. Tajuddin, H.; Harrisson, P.; Bitterlich, B.; Collings, J. C.; Sim, N.;
Batsanov, A. S.; Cheung, M. S.; Kawamorita, S.; Maxwell, A. C.; Shukla,
L.; Morris, J.; Lin, Z.; Marder, T. B.; Steel, P. G., Iridium-catalyzed C-H
borylation of quinolines and unsymmetrical 1,2-disubstituted benzenes: in-
sights into steric and electronic effects on selectivity. Chem. Sci. 2012, 3,
3505-3515.
H Activation in the Oxidative Cross-Coupling of Arenes. Angew. Chem.
Int. Ed. 2013, 52, 1781-1784; (d) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.;
Liu, L.; Zhang, J., Highly Site-Selective Direct C–H Bond
Functionalization of Phenols with α-Aryl-α-diazoacetates and
Diazooxindoles via Gold Catalysis. J. Am. Chem. Soc. 2014, 136, 6904-
6907; (e) Cambeiro, X. C.; Ahlsten, N.; Larrosa, I., Au-Catalyzed Cross-
Coupling of Arenes via Double C-H Activation. J. Am. Chem. Soc. 2015,
137, 15636-15639.
5. Ciana, C.-L.; Phipps, R. J.; Brandt, J. R.; Meyer, F.-M.; Gaunt, M. J.,
A Highly Para-Selective Copper(II)-Catalyzed Direct Arylation of Aniline
and Phenol Derivatives. Angew. Chem. Int. Ed. 2011, 50, 458-462.
6. For selected examples, see: (a) Wang, X.; Leow, D.; Yu, J.-Q., Pd(II)-
Catalyzed para-Selective C–H Arylation of Monosubstituted Arenes. J. Am.
Chem. Soc. 2011, 133, 13864-13867; (b) Luan, Y.-X.; Zhang, T.; Yao, W.-
W.; Lu, K.; Kong, L.-Y.; Lin, Y.-T.; Ye, M., Amide-Ligand-Controlled
Highly para-Selective Arylation of Monosubstituted Simple Arenes with
Arylboronic Acids. J. Am. Chem. Soc. 2017, 139, 1786-1789; (c) Naksom-
boon, K.; Poater, J.; Bickelhaupt, F. M.; Fernandez-Ibanez, M. A., para-
Selective C-H Olefination of Aniline Derivatives via Pd/S,O-Ligand Catal-
ysis. J. Am. Chem. Soc. 2019, 141, 6719-6725.
7. For examples of Pd-catalyzed para-functionalization, see: (a) Bag, S.;
Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.;
Maji, A.; Hazra, A.; Bera, M.; Maiti, D., Remote para-C–H Functionaliza-
tion of Arenes by a D-Shaped Biphenyl Template-Based Assembly. J. Am.
Chem. Soc. 2015, 137, 11888-11891; (b) Patra, T.; Bag, S.; Kancherla, R.;
Mondal, A.; Dey, A.; Pimparkar, S.; Agasti, S.; Modak, A.; Maiti, D., Pal-
ladium-Catalyzed Directed para C−H Functionalization of Phenols. Angew.
Chem. Int. Ed. 2016, 55, 7751-7755; (c) Maji, A.; Guin, S.; Feng, S.;
Dahiya, A.; Singh, V. K.; Liu, P.; Maiti, D., Experimental and Computa-
tional Exploration of para-Selective Silylation with a Hydrogen-Bonded
Template. Angew. Chem. Int. Ed. 2017, 56, 14903-14907; (d) Maji, A.;
Dahiya, A.; Lu, G.; Bhattacharya, T.; Brochetta, M.; Zanoni, G.; Liu, P.;
Maiti, D., H-bonded reusable template assisted para-selective ketonisation
using soft electrophilic vinyl ethers. Nature Commun. 2018, 9, 3582.
8. For examples of Ru-catalyzed para-functionalization, see: (a) Leitch,
J. A.; McMullin, C. L.; Paterson, A. J.; Mahon, M. F.; Bhonoah, Y.; Frost,
C. G., Ruthenium-Catalyzed para-Selective C−H Alkylation of Aniline De-
rivatives. Angew. Chem. Int. Ed. 2017, 56, 15131-15135; (b) Yuan, C.;
Zhu, L.; Chen, C.; Chen, X.; Yang, Y.; Lan, Y.; Zhao, Y., Ruthenium(II)-
enabled para-selective C–H difluoromethylation of anilides and their deriv-
atives. Nature Commun. 2018, 9, 1189; (c) Yuan, C.; Zhu, L.; Zeng, R.;
Lan, Y.; Zhao, Y., Ruthenium(II)-Catalyzed C−H Difluoromethylation of
Ketoximes: Tuning the Regioselectivity from the meta to the para Position.
Angew. Chem. Int. Ed. 2018, 57, 1277-1281.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9. (a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M.
R., Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic
C-H Bonds. Science 2002, 295, 305-308; (b) Ishiyama, T.; Takagi, J.;
Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F., Mild Iridium-Cata-
lyzed Borylation of Arenes. High Turnover Numbers, Room Temperature
Reactions, and Isolation of a Potential Intermediate. J. Am. Chem. Soc.
2002, 124, 390-391; (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F., C−H Activation for the Construction of C−B
Bonds. Chem. Rev. 2010, 110, 890-931.
10. (a) Hartwig, J. F., Regioselectivity of the borylation of alkanes and
arenes. Chem. Soc. Rev. 2011, 40, 1992-2002; (b) Preshlock, S. M.; Ghaf-
fari, B.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R., High-
Throughput Optimization of Ir-Catalyzed C–H Borylation: A Tutorial for
Practical Applications. J. Am. Chem. Soc. 2013, 135, 7572-7582.
20. (a) Boebel, T. A.; Hartwig, J. F., Silyl-Directed, Iridium-Catalyzed
ortho-Borylation of Arenes. A One-Pot ortho-Borylation of Phenols, Aryla-
mines, and Alkylarenes. J. Am. Chem. Soc. 2008, 130, 7534-7535; (b) Chat-
topadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.; Gore, K. A.;
Maleczka, R. E.; Singleton, D. A.; Smith, M. R., Ir-Catalyzed ortho-Boryla-
tion of Phenols Directed by Substrate–Ligand Electrostatic Interactions: A
Combined Experimental/in Silico Strategy for Optimizing Weak Interac-
tions. J. Am. Chem. Soc. 2017, 139, 7864-7871; (c) Li, H.-L.; Kanai, M.;
Kuninobu, Y., Iridium/Bipyridine-Catalyzed ortho-Selective C–H Boryla-
tion of Phenol and Aniline Derivatives. Org. Lett. 2017, 19, 5944-5947.
21. See supporting information for full details.
11. Ros, A.; Fernandez, R.; Lassaletta, J. M., Functional group directed
C-H borylation. Chem. Soc. Rev. 2014, 43, 3229-3243.
12. (a) Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M., A meta-selective
C–H borylation directed by a secondary interaction between ligand and sub-
strate. Nature Chem. 2015, 7, 712-717; (b) Bisht, R.; Chattopadhyay, B.,
Formal Ir-Catalyzed Ligand-Enabled Ortho and Meta Borylation of Aro-
matic Aldehydes via in Situ-Generated Imines. J. Am. Chem. Soc. 2016,
138, 84-87; (c) Davis, H. J.; Mihai, M. T.; Phipps, R. J., Ion Pair-Directed
Regiocontrol in Transition-Metal Catalysis: A Meta-Selective C–H Boryla-
tion of Aromatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016,
138, 12759-12762; (d) Davis, H. J.; Genov, G. R.; Phipps, R. J., meta-
Selective C−H Borylation of Benzylamine-, Phenethylamine-, and Phe-
nylpropylamine-Derived Amides Enabled by a Single Anionic Ligand. An-
gew. Chem. Int. Ed. 2017, 56, 13351-13355; (e) Bisht, R.; Hoque, M. E.;
Chattopadhyay, B., Amide Effects in C−H Activation: Noncovalent Inter-
actions with L-Shaped Ligand for meta Borylation of Aromatic Amides.
ACS Paragon Plus Environment