906
E. Merişor et al.
LETTER
K.; Robinson, N. P.; Whelan, J.; Bosnich, B. Tetrahedron
Lett. 1993, 34, 4309. (j) Komatsu, N.; Uda, M.; Suzuki, H.;
Takahashi, T.; Domae, T.; Wada, M. Tetrahedron Lett.
1997, 38, 7215. (k) Ishii, A.; Kotera, O.; Saeki, T.; Mikami,
K. Synlett 1997, 1145. (l) Yadav, J. S.; Reddy, B. V. S.;
Srihari, P. Synlett 2001, 673. (m) Wieland, L. C.; Zerth, H.
M.; Mohan, R. S. Tetrahedron Lett. 2002, 43, 4597.
(n) Zerth, H. M.; Leonard, N. M.; Mohan, R. S. Org. Lett.
2003, 5, 55.
substituent, it is supposed that an SN2 reaction takes place.
In this case, C reacts with the chloride ion as the best nu-
cleophile available under the reaction conditions and af-
fords the allyl halide 5.
In summary, this is the first report on the Lewis acid me-
diated transformation of 1-arylbut-3-en-1-ols and trimeth-
yl orthoformates into their corresponding homoallyl
ethers and homoallyl halides.
(14) Hunter, R.; Michael, J. P.; Tomlinson, G. D. Tetrahedron
1994, 50, 871.
(15) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem.
2002, 1578.
(16) General Procedure for InCl3-Mediated Reactions of
Acknowledgment
We thank Dr. R. Frank, Ms. I. Klaiber, Dr. H. Leutbecher, and Ms.
S. Mika for recording of UV, MS and NMR spectra.
Homoallyl Alcohols 1 with TMOF (2)
InCl3 (3 mmol) was added to a stirred solution of homoallyl
alcohol 1 (3 mmol) and TMOF (2, 3 mmol) in CH2Cl2 (25
mL). The reaction mixture was stirred at r.t. under Ar until 1
had been completely consumed (TLC). Then H2O (25 mL)
was added and the resulting mixture was extracted with
CH2Cl2 (75 mL). The extracts were washed with brine (25
mL), dried over MgSO4, filtered and concentrated in vacuo.
The products were purified by Kugelrohr distillation or flash
chromatography on silica gel.
References and Notes
(1) Pindur, U. The Chemistry of Acid Derivatives, In The
Chemistry of Functional Groups, Suppl. B, Part 2, Vol. 2;
Wiley: New York, 1992, 967.
(2) Perron, F.; Gahman, T. C.; Albizati, K. F. Tetrahedron Lett.
1988, 29, 2023.
(3) (a) Perron, F.; Albizati, K. F. J. Org. Chem. 1987, 52, 4128.
(b) Perron-Sierra, F.; Promo, M. A.; Martin, V. A.; Albizati,
K. F. J. Org. Chem. 1991, 56, 6188.
(4) Pindur, U.; Müller, J.; Flo, C.; Witzel, H. Chem. Soc. Rev.
1987, 16, 75.
(5) For examples, see: (a) Keck, G. E.; Covel, J. A.; Schiff, T.;
Yu, T. Org. Lett. 2002, 4, 1189. (b) Mekhalfia, A.; Markó,
I. E.; Adams, H. Tetrahedron Lett. 1991, 32, 4783.
(c) Martin, V. A.; Perron, F.; Albizati, K. F. Tetrahedron
Lett. 1990, 31, 301.
(17) Selected data for 3e: Rf = 0.20 (PE–CH2Cl2, 7:3). UV/Vis
(MeCN): lmax (log e) = 269 (3.17), 277 (3.18) nm. IR
(ATR): 3090, 2927, 2819, 1641 (C=C), 1500, 1448, 1357,
1189, 1156, 1108 (C–O–C), 1091, 974, 912, 808, 729 cm–1.
1H NMR (300 MHz, CDCl3): d = 2.33 (s, 3 H, 2¢-CH3), 2.38
(s, 3 H, 5¢-CH3), 2.44 (br ddd, 1 H, 2Jgem = 14.5 Hz, 3J = ca.
7.4 Hz, 3J = ca. 7.4 Hz, 2-H), 2.53 (br ddd, 1 H, 2Jgem = 14.5
Hz, 3J = ca. 7.0 Hz, 3J = ca. 7.0 Hz, 2-H), 3.27 (s, 3 H, 1-
OCH3), 4.48 (br dd, 3J = 7.9 Hz, 3J = 8.0 Hz, 1 H, 1-H), 5.11
(ddt, 1 H, 3Jcis = 9.8 Hz, 2J = 1.3 Hz, 4-H), 5.17 (dq, 1 H,
3Jtrans = 17.2 Hz, 2J = 1.3 Hz, 4-H), 5.87 (dddd, 1 H,
3Jcis = 10.1, 3Jtrans = 17.1 Hz, 3J = ca. 7.0 Hz, 3J = ca. 7.0 Hz,
3-H), 7.04 (br d, 3J = 7.5 Hz, 1 H, 3¢-H), 7.08 (br d, 3J = 7.8
Hz, 1 H, 4¢-H), 7.24 (s, 1 H, 6-H). 13C NMR (75 MHz,
CDCl3): d = 18.7 (2¢-CH3), 21.1 (5¢-CH3), 41.6 (C-2), 56.6
(1-OCH3), 80.0 (C-1), 116.6 (C-4), 126.4 (C-6¢), 127.8 (C-
4¢), 130.2 (C-3¢), 132.2 (C-1¢), 135.2 (C-3), 135.6 (C-5¢),
139.5 (C-1¢). MS (EI, 70 eV): m/z (%) = 149 (100) [M+ –
41], 143 (12), 133 (45), 119 (59), 105 (65), 103 (15), 91 (31),
77 (32), 65 (8), 51 (10). HRMS (EI): m/z calcd for C13H18O:
190.1357; found: 190.1316 [M+]. Anal. Calcd for C13H18O:
C, 82.06; H, 9.53. Found: C, 82.05; H, 9.58.
(6) For a review, see: Clarke, P. A.; Santos, S. Eur. J. Org.
Chem. 2006, 2045.
(7) (a) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc.
2001, 123, 8420. (b) Balado, C. P.; Markó, I. E. Tetrahedron
Lett. 2005, 46, 4887. (c) Leroy, B.; Markó, I. E. J. Org.
Chem. 2002, 67, 8744. (d) Markó, I. E.; Mekhalfia, A.
Tetrahedron Lett. 1992, 33, 1799. (e) Mekhalfia, A.;
Markó, I. E.; Adams, H. Tetrahedron Lett. 1991, 32, 4783.
(f) Wei, Z. Y.; Wang, D.; Li, J. S.; Chan, T. H. J. Org. Chem.
1989, 54, 5768.
(8) (a) Schmidt, D.; Leutbecher, H.; Conrad, J.; Klaiber, I.;
Mika, S.; Greiner, G.; Beifuss, U. Synlett 2007, 1725.
(b) Leutbecher, H.; Schmidt, D.; Conrad, J.; Beifuss, U.
Synlett 2007, 2545.
(18) Selected data for 4f: Rf = 0.62 (PE–CH2Cl2, 7:3). UV/Vis
(MeCN): lmax (log e) = 271 (3.01), 265 (3.05) nm. IR
(ATR): 3077, 2980, 2905, 1641 (C=C), 1604, 1508, 1431,
1343, 1295, 1220, 1156, 1073 (C–O–C), 1013, 991, 915,
831, 785, 722 cm–1. MS (EI, 70 eV): m/z (%) = 273 (4)
[M+ – 41], 150 (20), 149 (100), 109 (35), 95 (3), 53 (2).
HRMS (EI): m/z calcd for the fragment [C10H10F+]:
149.0761; found: 149.0750.
(9) Ropp, G. A.; Coyner, E. C. J. Am. Chem. Soc. 1950, 72,
3960.
(10) (a) Dobbs, A. P.; Pivnevi, L.; Penny, M. J.; Martinović, S.;
Iley, J. N.; Stephenson, P. T. Chem. Commun. 2006, 3134.
(b) Yang, X.-F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001,
66, 739.
(11) Similar results were obtained when 1a was reacted with
triethyl orthoformate (TEOF).
(12) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.
(13) (a) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976,
941. (b) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett.
1978, 499. (c) Tsunoda, T.; Suzuki, M.; Noyori, R.
Tetrahedron Lett. 1980, 21, 71. (d) Sakurai, H.; Sasaki, K.;
Hosomi, A. Tetrahedron Lett. 1981, 22, 745.
(19) Selected data for 5j: Rf = 0.50 (PE). UV/Vis (MeCN): lmax
(log e) = 266 (1.97) nm. IR (ATR): 3080, 2980, 1654 (C=C),
1523, 1501, 1449, 1424, 1359, 1316, 1148, 1130, 1042, 991,
955, 928, 802, 761, 741, 684 cm–1. 1H NMR (500 MHz,
CDCl3): d = 2.96 (br ddd, 1 H, 2J = 14.3 Hz, 3J = ca. 7.8 Hz,
3J = ca. 7.8 Hz, 2-H), 3.05 (br ddd, 1 H, 2J = 14.3 Hz, 3J = ca.
7.1 Hz, 3J = ca. 7.1 Hz, 2-H), 5.15 (ddt, 1 H, 3J = 10.1 Hz,
2J = 1.4 Hz, 4J = 1.2 Hz, 4-H), 5.19 (dq, 1 H, 2J = 1.4 Hz,
3Jtrans = 17.1 Hz, 4-H), 5.22 (br dd, 1 H, 3J = ca. 8.0 Hz, 3J =
ca. 8.0 Hz, 1-H), 5.73 (dddd, 1 H, 3Jtrans = 17.2 Hz,
(e) Mukaiyama, T.; Nagaoka, H.; Murakami, M.; Ohshima,
M. Chem. Lett. 1985, 977. (f) Kawai, M.; Onaka, M.; Izumi,
Y. Chem. Lett. 1986, 381. (g) Tanaka, H.; Yamashita, S.;
Ikemoto, Y.; Torii, S. Tetrahedron Lett. 1988, 29, 1721.
(h) Trehan, A.; Vij, A.; Walia, M.; Kaur, G.; Verma, R. D.;
Trehan, S. Tetrahedron Lett. 1993, 34, 7335. (i) Hollis, T.
3Jcis = 10.1 Hz, 3J = ca. 7.0 Hz, 3J = ca. 7.0 Hz, 3-H). 13
C
NMR (125 MHz, CDCl3): d = 41.1 (C-2), 49.5 (C-1), 114.5
(C-1¢), 119.5 (C-4), 132.5 (C-3) 138.7 (d, C-4¢), 141.2 (d, C-
Synlett 2008, No. 6, 903–907 © Thieme Stuttgart · New York