Scheme 1
.
Suzuki Approach to ortho-Phenylene-Bridged
Phenothiazinophane 1
Scheme 2. Synthesis of Ethenylene-Bridged
Phenothiazinophanes 4 and 5
chains could constitute a so far unknown class of redox
addressable molecular wires. In this respect, the question
arises as to whether communication of two electrophoric
subunits in phenothiazinophanes is still operative and to what
extent it might occur. As part of our program to synthesize
and investigate phenothiazinyl-based molecular wires8 and
functional molecules,9 phenothiazinyl dyads, and triads,10
we now have focused on the synthesis and studies of
phenothiazines embedded in a cyclophane topology. Here,
we communicate the synthesis and structures of several
phenothiazinophanes as well as the first studies on their
electronic properties and their electronic structures.
NMR spectroscopy, by MALDI-TOF, and additionally by
X-ray structure analysis indicating an anti orientation of the
phenothiazinyl moieties (see Supporting Information).12
Ethenylene-bridged cyclophanes can be readily synthesized
by the McMurry coupling13 of suitable dialdehydes, and this
approach has also been successfully applied to the synthesis
of several heterophanes.14 Therefore, phenothiazinyl dial-
dehydes 2 are the suitable precursors for the synthesis of
ethenylene-bridged phenothiazinophanes.15 Most conve-
niently, TiCl4 and zinc were chosen as reagents as they are
inexpensive and easy to handle.16
Reacting the phenothiazinyl dialdehydes 2 and 3 under
McMurry conditions in boiling dioxane17 under pseudo high
dilution for 2-3 days gave rise to the formation of the
cyclophanes 4 and 5 in good yields (Scheme 2).
The structure of all cyclophanes was unambiguously
supported by extensive NMR spectroscopy, mass spectrom-
etry, combustion analyses, and later by an X-ray structure
analysis of 4a, again revealing an anti orientation of the
phenothiazinyl moieties (Figure 1).12
Upon the basis of our previous experience using borylated
phenothiazines in Suzuki couplings, a cross-coupling strategy
for the formation of phenothiazinophanes was devised
(Scheme 1).
Therefore, upon reacting 1,2-diiodo benzene and 10-n-
hexyl-3,7-bis-(pinacolyl boryl)-10H-phenothiazine under
pseudo high dilution Suzuki conditions,11 the phenothiazi-
nophane 1 was separated and isolated in 13% yield as a
colorless crystalline solid. Besides, column chromatography
allows the isolation of mixtures of higher macrocycles in
minor amounts (identified by mass spectrometry). The
molecular structure of 1 was unambiguously supported by
(12) Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication nos. CCDC 685260 (1), CCDC685261
(4a), and CCDC 685262 (6). Copies of the data can be obtained free of charge
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +
44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk).
(7) (a) Wheland, R. C.; Gillson, J. L. J. Am. Chem. Soc. 1976, 98, 3916–
3925. (b) Berges, P.; Kudnig, J.; Klar, G.; Sanchez-Martinez, E.; Diaz-
Calleja, R. Synth. Met. 1992, 46, 207–219. (c) Knorr, A.; Daub, J. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2664–2666. (d) Spreitzer, H.; Scholz, M.;
Gescheidt, G.; Daub, J. Liebigs Ann. Chem. 1996, 2069-2077. (e) Spreitzer,
H.; Daub, J. Chem.-Eur. J. 1996, 2, 1150–1158.
(13) For reviews, see, e.g.: (a) McMurry, J. E. Chem. ReV. 1989, 89,
1513–1524. (b) Rieke, R. D.; Kim, S.-H. J. Org. Chem. 1998, 63, 5235–
5239.
(8) (a) Mu¨ller, T. J. J. Tetrahedron Lett. 1999, 40, 6563–6566. (b)
Kra¨mer, C. S.; Zeitler, K.; Mu¨ller, T. J. J. Org. Lett. 2000, 2, 3723–3726.
(c) Kra¨mer, C. S.; Mu¨ller, T. J. J. Eur. J. Org. Chem. 2003, 3534-3548.
(d) Sailer, M.; Franz, A. W.; Mu¨ller, T. J. J. Chem.-Eur. J. 2008, 8, 2602–
2614.
(14) (a) Ephritikhine, M.; Villiers, C. Modern Carbonyl Olefination;
Wiley-VCH Verlag GmbH: Weinheim, New York, Chichester, Brisbane,
Singapore, Toronto; 1. Auflage 2004, 223-285. (b) Kawase, T.; Ueda, N.;
Tanake, K.; Seirai, Y.; Oda, M. Tetrahedron Lett. 2001, 42, 5509–5511.
(c) Vogel, E.; Binsack, B.; Hellwig, Y.; Erben, C.; Heger, A.; Lex, J.; Wu,
Y. D. Angew. Chem., Int. Ed. Engl. 1997, 36, 2612–2615.
(15) For the first phenothiazinophane, see: (a) Petry, C.; Lang, M.; Staab,
H. A.; Bauer, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1711–1714. (b)
Independently from our studies, a related phenothiazinophane has just
recently been reported. See: Rajakumar, P.; Kanagalatha, R. Tetrahedron
Lett. 2007, 48, 8496–8500.
(9) (a) Sailer, M.; Nonnenmacher, M.; Oeser, T.; Mu¨ller, T. J. J. Eur.
J. Org. Chem. 2006, 423-435. (b) Sailer, M.; Rominger, F.; Mu¨ller, T. J. J.
J. Organomet. Chem. 2006, 691, 299–308. (c) Hauck, M.; Scho¨nhaber, J.;
Zucchero, A. J.; Hardcastle, K. I.; Mu¨ller, T. J. J.; Bunz, U. H. F. J. Org.
Chem. 2007, 72, 6714–6725.
(10) (a) Kra¨mer, C. S.; Zeitler, K.; Mu¨ller, T. J. J. Tetrahedron Lett.
2001, 42, 8619–8624. (b) Kra¨mer, C. S.; Zimmermann, T. J.; Sailer, M.;
Mu¨ller, T. J. J. Synthesis 2002, 1163-1170. (c) Franz, A. W.; Mu¨ller, T. J. J.
Synthesis 2008, 1121-1125.
(16) Lenoir, D. Synthesis 1977, 553-554.
(17) Fu¨rstner, A.; Bogdanovic´, B. Angew. Chem., Int Ed. 1996, 35, 2442–
2469.
(11) Grave, C.; Schlu¨ter, A. D. Eur. J. Org. Chem. 2002, 3075-
3098.
2798
Org. Lett., Vol. 10, No. 13, 2008