C O M M U N I C A T I O N S
Scheme 2. Coupling of 4-O-Benzylgallates by CuCl2 ·amine
Complex
The subsequent five steps following the synthesis of key
intermediate 7 achieved the total synthesis (Scheme 3). Thus, the
benzyl protection of 7 followed by the cleavage of the PMB group
afforded 10 whose double-bond was then oxidatively cleaved to
reconstruct the pyranose ring providing 11. Introduction of the
galloyl group to the anomeric position afforded 12 (R/ꢀ ) 33/67).
Hydrogenolysis of the ꢀ-isomer 12b cleaved eleven benzyl groups
to provide 1 whose physical and spectral data (optical rotation, 1H
and 13C NMR, IR) were identical with those of the natural corilagin.
In summary, the total synthesis of 1 was achieved by the
integration of the development of the oxidative coupling of the
symmetrically protected gallates and the temporarily ring-opened
synthetic route for the 3,6-HHDP bridge. This first total synthesis
1
of a C4/B-ellagitannin reveals that the combination of the 4-O-
benzyl gallate and the CuCl2 ·amine complex allows efficient
preparation of the HHDP group. Because of the structural resem-
blance in ellagitannins, this new method would be applicable for
the syntheses of the other natural ellagitannins and their artificial
analogues.
Scheme 3. Synthesis of Corilagin (1)a
Acknowledgment. We thank Professor Takashi Yoshida (Mat-
suyama University, Japan) for providing natural corilagin. This work
was partly supported by the Grant-in-Aid for Scientific Research
on Priority Areas (17035086) from MEXT.
Supporting Information Available: Complete ref 11, experimental
procedures, characterization of new compounds, 1H and 13C NMR
spectra for compound 5-7, 9-11, 12ab, and natural and synthetic 1.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Gross, G. G.; Hemingway, R. W.; Yoshida, T., Eds. Plant Polyphenol
2. Chemistry, Biology, Pharmacology and Ecology; Kluwer Academic/
Pleum Publishers: New York, 1999. (b) Yoshida, T.; Hatano, T.; Ito, H.;
Okuda, T. Studies in Natural Products Chemistry; Rahman, A.-u., Ed., Vol.
23, Elsevier Science: New York, 2000; pp 395-453..
(2) Schmidt, O. T.; Lademann, R. Liebigs Ann. Chem. 1951, 571, 232–237.
(3) Schmidt, O. T.; Schmidt, D. M.; Herok, J. Liebigs Ann. Chem. 1954, 587,
67–74.
(4) Okuda, T.; Yoshida, T.; Hatano, T. Tetrahedron Lett. 1980, 21, 2561–
2564.
(5) (a) Shimizu, M.; Shiota, S.; Mizushima, T.; Ito, H.; Hatano, T.; Yoshida,
T.; Tsuchiya, T. Antimicrob. Agents Chemother. 2001, 3198–3201. (b) Liu,
K. C.; Lin, M.; Lee, S.; Chiou, J.; Ren, S.; Lien, E. J. Planta Med. 1999,
65, 43–46. (c) Okabe, S.; Suganuma, M.; Imayoshi, Y.; Taniguchi, S.;
Yoshida, T.; Fujiki, H. Biol. Pharm. Bull. 2001, 24, 1145–1148. (d) Adesina,
S. K.; Idowu, O.; Ogundaini, A. O.; Oladimeji, H.; Olugbade, T. A.;
Onawunmi, G. O.; Pais, M. Phytother. Res. 2000, 14, 371–374. (e) Hwang,
E.; Ahn, B.; Lee, H.; Kim, Y.; Lee, K.; Bok, S.; Kim, Y.; Kim, S. Planta
Med. 2001, 67, 501–504. (f) Cheng, J. R.; Lin, T. C.; Hsu, F. L. Can.
J. Physiol. Pharmacol. 1995, 73, 1425–1429.
(6) Ikeda, Y.; Nagao, K.; Tanigakiuchi, K.; Tokumaru, G.; Tsuchiya, H.;
Yamada, H. Tetrahedron Lett. 2004, 45, 487–489.
(7) (a) Quideau, S.; Feldman, K. S. Chem. ReV. 1996, 96, 475–503. (b) Feldman,
K. S. Phytochemistry 2005, 66, 1984–2000. (c) Khanbabaee, K.; van Ree,
T. Synthesis 2001, 1585–1610.
(8) Feldman, K. S.; Ensel, S. M. J. Am. Chem. Soc. 1994, 116, 3357–3366.
(9) Feldman, K. S.; Sahasrabudhe, K. J. Org. Chem. 1999, 64, 209–216.
(10) Pearson, A. J.; Bruhn, P. R. J. Org. Chem. 1991, 56, 7092–7097.
(11) See Supporting Information.
(12) Brussee, J.; Groenendijk, J. L. G.; te Koppele, J. M.; Jansen, A. C. A.
Tetrahedron 1985, 41, 3313–3319.
a DDQ ) 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, DMAP ) 4-(N,N-
dimethylamino)pyridine, EDCI ) 1-ethyl-3-(3-dimethylaminopropyl)-car-
bodiimide hydrochloride, MOM ) methoxymethyl.
axial diastereoselectivity would be thermodynamically controlled
because the bond between the two aryl groups rotates as their copper
salts. For example, certain racemic 1,1′-biaryl-2,2′-diols deracemize
by treatment with CuCl or CuCl2 and chiral amines.13 In addition,
CuCl2 ·amine-mediated phenol couplings accompany similar dera-
cemizations by the support of the chirality of the amines or the
substrates.12,14 The atrop-R configuration in 7 was ultimately
confirmed by the total synthesis of 1.
(13) (a) Zang, Y.; Yeung, S.-M.; Wu, H.; Heller, D. P.; Wu, C.; Wulff, W. D.
Org. Lett. 2003, 5, 1813–1816. (b) Smrcˇina, M.; Lorenc, M.; Hanusˇ, V.;
Sedmera, P.; Kocˇovsky´, P. J. Org. Chem. 1992, 57, 1917–1920.
ˇ
(14) (a) Smrcˇina, M.; Pola´kova´, J.; Vyskocˇil, S.; Kocˇovsky´, P. J. Org. Chem.
1993, 58, 4534–4358. (b) Tsubaki, K.; Miura, M.; Morikawa, H.; Tanaka,
H.; Kawabata, T.; Furuta, T.; Tanaka, K.; Fuji, K. J. Am. Chem. Soc. 2003,
125, 16200–16201.
JA803111Z
9
J. AM. CHEM. SOC. VOL. 130, NO. 24, 2008 7567