Communications
[9] X. Jiang, M. Van den Berg, A. J. Minnaard, B. L. Feringa, J. G.
de Vries, Tetrahedron: Asymmetry 2004, 15, 2223 – 2229.
[10] a) O. Pardigon, G. Buono, Tetrahedron: Asymmetry 1993, 4,
1977 – 1980; b) O. Pardigon, A. Tenaglia, G. Buono, J. Org.
Chem. 1995, 60, 1868 – 1871; c) A. Tenaglia, O. Pardigon, G.
Buono, J. Org. Chem. 1996, 61, 1129 – 1132; d) O. Pardigon, A.
Tenaglia, G. Buono, J. Mol. Catal. A 2003, 196, 157 – 164.
[11] With enantiopure L1, the complex 1 was clearly identified by
NMR spectroscopy. The acetato-bridged structure was sup-
ported by the ESI mass spectrum of the palladium complex 1
(see Supporting Information).
Table 4: Enantioselective benzylidenecyclopropanation of 2 with 3a
using a chiral secondary phosphine oxide ligand.
Entry[a]
L
T [8C]
t [h]
Yield [%][b]
ee [%][c]
1
2
(À)-L1
(À)-L2
50
25
60
20
53
80
59
22
[12] Complex 5 was prepared according to Liꢀs procedure[4] from L1.
As shown by 31P NMR spectra and X-ray crystallography, only
one diastereomeric complex was obtained which exhibits C2
symmetry and retention of configuration at phosphorus (see
Supporting Information). During the course of our work, Leung
and co-workers reported chiral bisphosphinite metalloligands
derived from a P-chiral secondary phosphine oxide: E. Y. Y.
Chan, Q. F. Zhang, Y.-K. Sau, S. M. F. Lo, H. H. Y. Sung, I. D.
Williams, R. K. Haynes, W.-H. Leung, Inorg. Chem. 2004, 43,
4921 – 4926.
[a] Experiments were performed using 5 mol% of Pd(OAc)2 and
10 mol% of ligand L. [b] Yield of isolated product. [c] ee values
determined on a Daicel Chiralcel OJ-H column at l=254 nm using
hexane/iPrOH 99:1 as eluent with a flow rate of 1 mLminÀ1; t1 =6.4 min,
t2 =7.1 min.
of asymmetric cycloaddition reactions are underway in our
laboratory.
[13] Cycloadduct 3a was also contaminated with 5% of an unidenti-
fied byproduct.
Received: March 9, 2005
Revised: April 28, 2005
Published online: June 27, 2005
[14] a) H. Kikuchi, M. Uno, S. Takahashi, Chem. Lett. 1997, 1273 –
1274; b) Y. Matsushima, H. Kikuchi, M. Uno, S. Takahashi, Bull.
Chem. Soc. Jpn. 1999, 72, 2475 – 2482; c) Y. Yamamoto, H.
Kitahara, R. Ogawa, H. Kawaguchi, K. Tatsumi, K. Itoh, J. Am.
Chem. Soc. 2000, 122, 4310 – 4319; For pertinent reviews on
Keywords: alkynes · cycloaddition · cyclopropanes · palladium ·
.
phosphane ligands
À
ruthenium-catalyzed C C bond formations, see: d) B. M. Trost,
F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067 – 2096;
e) Ruthenium Catalysts and Fine Chemistry (Eds.: C. Bruneau,
P. H. Dixneuf), Springer, Berlin, 2004; f) Y. Yamamoto, K. Itoh
in Ruthenium in Organic Synthesis (Ed.: S-I. Murahashi), Wiley-
VCH, Weinheim, 2004, chap. 4, pp. 95 – 127.
[1] “Methods of Preparation of Phosphine Chalcogenides”: A. K.
Bhattacharya, N. K. Roy in The Chemistry of Organophospho-
rous Compounds, Vol. 2 (Ed.: F. R. Hartley), Wiley, Chichester,
1992, pp. 195 – 285.
[2] “Chemical Properties and Reactions of Phosphine Chalcoge-
nides”: R. S. Edmundson in The Chemistry of Organophospho-
rous Compounds, Vol. 2 (Ed.: F. R. Hartley), Wiley, Chichester,
1992, pp. 287 – 407.
[3] a) D. M. Roudhill, R. P. Sperline, W. B. Beaulieu, Coord. Chem.
Rev. 1978, 26, 263 – 279; b) B. Walther, Coord. Chem. Rev. 1984,
60, 67 – 105; c) T. Appleby, J. D. Woollins, Coord. Chem. Rev.
2002, 235, 121 – 140.
[4] a) G. Y. Li, G. Zheng, A. F. Noonan, J. Org. Chem. 2001, 66,
8677 – 8681; b) G. Y. Li, Angew. Chem. 2001, 113, 1561 – 1564;
Angew. Chem. Int. Ed. 2001, 40, 1513 – 1516; c) G. Y. Li, P. J.
Fagan, P. L. Watson, Angew. Chem. 2001, 113, 1140 – 1143;
Angew. Chem. Int. Ed. 2001, 40, 1106 – 1109; d) G. Y. Li, J. Org.
Chem. 2002, 67, 3643 – 3650.
[15] a) C. H. Liu, C. H. Cheng, M. C. Cheng, S. M. Peng, Organo-
metallics 1994, 13, 1832– 1839; b) D. Brown, R. Grigg, V.
Sridharan, V. Tambyrajah, M. Thornton-Pett, Tetrahedron
1998, 54, 2595 – 2606.
[16] Other catalysts associated with two PPh3 ligands such as
[PdCl{h3-(C3H5)}2], Pd(OAc)2, and [Pd2(dba)3]·CHCl3 (dba =
dibenzylideneacetone) did not promote the reaction at all.
[17] Toluene gave the best results. The [2+1] cycloaddition pro-
ceeded well in heterogeneous media in solvents such as Et2O
(74% yield), THF (59% yield), or CH2Cl2 (49% yield). The
lowest yields were obtained with more polar solvents such as
N,N-dimethylformamide (10% yield) or CH3CN (6% yield).
[18] The catalytic system was stable under the experimental con-
ditions described and could be recovered after the reaction by
column chromatography.
[19] A difference in reactivity was observed by using trimethylsilyl-
acetylene in place of propargylsilane 3c: Only an adduct of
hydroalkynylation was obtained as a single diastereomer in 68%
yield.
[5] a) W. Yang, Y. Wang, J. R. Corte, Org. Lett. 2003, 5, 3131 – 3134;
b) C. Wolf, R. Lerebours, J. Org. Chem. 2003, 68, 7077 – 7084;
c) C. Wolf, R. Lerebours, E. H. Tanzani, Synthesis 2003, 68,
2069 – 2073; d) C. Wolf, R. Lerebours, Org. Lett. 2004, 6, 1147 –
1150.
[6] a) W. Dai, K. K. Y. Yeung, W. H. Leung, K. K. Haynes, Tetrahe-
dron: Asymmetry 2003, 14, 2821 – 2826; b) T. Nemoto, T.
Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, J.
Am. Chem. Soc. 2004, 126, 3690 – 3691.
[7] a) T. Ghaffar, A. W. Parkins, Tetrahedron Lett. 1995, 36, 8657 –
8660; b) C. J. Cobley, M. van den Heuvel, A. Abbadi, J. G.
de Vries, Tetrahedron Lett. 2000, 41, 2467 – 2470; c) T. Ghaffar,
A. W. Parkins, J. Mol. Catal. A 2000, 160, 249 – 261; d) X. Jiang,
A. J. Minaard, B. L. Feringa, J. G. de Vries, J. Org. Chem. 2004,
69, 2327 – 2331.
[8] X. Jiang, A. J. Minnaard, B. Hessen, B. L. Feringa, A. L. L.
Duchateau, J. G. O. Andrien, J. A. F Boogers, J. G. de Vries,
Org. Lett. 2003, 5, 1503 – 1506.
[20] The reaction is probably catalyzed by a PdII catalyst. Indeed, Pd0-
catalyzed reactions of various propargylic compounds proceed
by the formation of either s-allenyl or s-prop-2-ynylpalladium
species; see: J. Tsuji, Palladium Reagents and Catalysts: New
Perspectives for the 21st Century, Wiley, Chichester, 2004,
chap. 6, pp. 543 – 563; for the Pd0- and PdII-catalyzed reactions
of alkynes, see: J. Tsuji, Palladium Reagents and Catalysts: New
Perspectives for the 21st Century, Wiley, Chichester, 2004,
chap. 7, pp. 565 – 599.
[21] a) D. H. Aue, M. J. Meshishnek, J. Am. Chem. Soc. 1977, 99,
223 – 231; b) T. Sasaki, S. Eguchi, M. Ohno, F. Nakata, J. Org.
Chem. 1976, 41, 2408 – 2410.
[22] These rearrangments are geometrically constrained to occur by a
s2s + s2p mechanism, which is a symmetry-forbidden reaction.
4756
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 4753 –4757