3680
J. Minville et al. / Tetrahedron Letters 49 (2008) 3677–3681
ylenesulfonamide in hand, we next turned our attention at
exploring the ability of these compounds to undergo RCM
reactions. The first reaction parameter examined was the
effect of catalyst loading on the RCM reaction of substrate
15 as shown in Table 4. We were pleased to see that an
exposure of diene 15 to 10 mol % of Grubbs catalyst pro-
videdan 85% isolated yield of the benzothiazine 1,1-dioxide
product 16. Lowering the catalyst loading to 5 mol % was
found to have a significant negative impact on the product
yield, in contrast to what was observed in the quinolinone
series. When benzene was employed as the reaction solvent,
the reaction mixture turned black within 15 min (a sign of
catalyst decomposition) and none of the expected product
was detected. From these initial studies, the conditions of
entry 1 from Table 4 were selected as the standard condi-
tions for further studies.
The scope of the N-phenylethylenesulfonamide RCM
chemistry presented in Table 5, in general, mirrors the
results with the quinolinone system. As illustrated in this
table, benzene substitution (R1) is well tolerated as both
electron-withdrawing and electron-donating substituents
give excellent yields of the desired product (Table 5, entries
1–6). Similar to the quinolinone findings, substitution on
nitrogen (R2) with alkyl, benzyl, and substituted benzyl
derivatives smoothly proceeded to give excellent yields of
the corresponding benzothiazine 1,1-dioxide products.
While a methyl substituent at the a-styryl position (R3)
allows for the smooth conversion to the cyclized product
(92%), a phenyl substituent at this position completely
shuts down the RCM reaction (Table 5, entry 14), similar
to what was observed with the quinolinone series (Table
2, entries 13 and 14).
In summary, we have presented an efficient RCM
approach for the synthesis of highly functionalized quinoli-
nones and benzothiazine 1,1-dioxides. The method is gen-
eral in scope and offers the opportunity for the
convenient synthesis of functionalized systems. The gener-
ality and scope of the method presented herein should find
application in the synthesis of these ring systems. To date,
the main limitation in the RCM of these substrates is the
narrow scope at substitution at the a-styryl and a-acrylam-
ide positions of the molecule. Studies aimed at overcoming
these limitations are in progress and will be disclosed in due
course.
Acknowledgment
J.M. and J.P. wish to thank the Natural Science and
Engineering Council of Canada (NSERC) for undergradu-
ate fellowships.
References and notes
1. (a) Forbis, R. M.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1973, 95,
5003; (b) Nadzan, A. M.; Rinehart, K. L., Jr. J. Antibiot. 1977, 523;
(c) Strelitz, F.; Flon, H.; Asheshov, I. N. Proc. Natl. Acad. Sci. U.S.A.
1955, 620; (d) Rinehart, K. L., Jr.; Leadbetter, G.; Larson, R. A.;
Forbis, R. M. J. Am. Chem. Soc. 1970, 92, 6994; (e) Naganawa, H.;
Wakashiro, T.; Yagi, A.; Kondo, S.; Takita, T.; Hamada, M.; Maeda,
K.; Umezawa, H. J. Antibiot. 1970, 23, 365.
2. (a) Matera, M. G.; Cazzola, M. Drugs 2007, 67, 503; (b) Caraglia, M.;
Marra, M.; Viscomi, C.; D’Alessandro, A. M.; Budillon, A.; Meo, G.;
Arra, C.; Barbieri, A.; Rapp, U. R.; Baldi, A.; Tassone, P.; Venuta, S.;
Abbruzzese, A.; Tagliaferri, P. Int. J. Cancer 2007, 121, 2317;
Norman, P. Curr. Opin. Investig. Drugs 2002, 3, 313; (c) Kieseier, B.
C.; Wiendl, H. CNS Drugs 2007, 21, 483; (d) McCort, G.; Hoornaert,
C.; Aletru, M.; Denys, C.; Duclos, O.; Cadilhac, C.; Guilpain, E.;
Dellac, G.; Janiak, P.; Galzin, A.-M.; Delahaye, M.; Guilbert, F.;
O’Connor, S. Bioorg. Med. Chem. 2001, 9, 2129.
Table 5
3. For representative methods for the synthesis of quinolinones see:
(a) Sim, M. M.; Lee, C. L.; Ganesan, A. Tetrahedron Lett. 1998, 39,
6399; (b) Kondo, Y.; Inamoto, K.; Sakamoto, T. J. Comb. Chem.
2000, 2, 232; (c) Miura, Y.; Takaku, S.; Nawata, Y.; Hamana, M.
Heterocycles 1991, 32, 1579; (d) Bashir, M.; Kingston, D. G. I.;
Carman, R. J.; Van Tassell, R. L.; Wilkins, T. D. Heterocycles 1989,
29, 1127; (e) Gesto, C.; De La Cuesta, E.; Avendano, C. Synth.
Commun. 1989, 19, 3523; (f) Robl, J. A. Synthesis 1991, 56; (g) Lee,
H.; Anderson, W. K. Tetrahedron Lett. 1990, 31, 4405; (h) Yamag-
uchi, S.; Yokoi, T.; Yamada, M.; Arai, H.; Uchiuzo, Y.; Kawase, Y.
J. Heterocycl. Chem. 1990, 27, 1003; (i) Jaroszewski, J. W. J.
Heterocycl. Chem. 1990, 27, 1227; (j) Kitahara, Y.; Shimizu, M.;
Kubo, A. Heterocycles 1990, 31, 2085; (k) Balasubramaniyan, V.;
Argade, N. P. Synth. Commun. 1989, 19, 3103; (l) Yamaguchi, S.;
Yoshimoto, Y.; Murai, R.; Ohama, E.; Kawase, Y. J. Heterocycl.
Chem. 1990, 27, 999.
4. For representative examples of the use of cyclic sulfonamides in
medicinal chemistry see: Hanson, P. R.; Probst, D. A.; Robinson, R.
E.; Yau, M. Tetrahedron Lett.1999, 40, 4761. and references cited
within.
5. For recent reviews on ring-closing metathesis see: (a) Trnka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18; (b) Furstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3012; (c) Grubbs, R. H. Tetrahedron 2004,
60, 7117.
RCM of substituted N-phenylethylenesulfonamides
R3
1
1
10 mol% Grubbs 2nd,
2
2
R3
R2
R1
O
R1
S
CH2Cl2, 40 ºC
0.01 M
3
N
R2
N
O S
O
3
O
4
4
17
18
Entry
R1
R2
R3
Yielda (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
a
2-Me
4-Me
2-Cl
4-OMe
4-CF3
2,4-Cl
H
H
H
H
H
H
H
H
H
H
H
H
Me
H
H
H
H
H
H
H
H
H
H
H
H
Me
Ph
87
95
82
Quant.
85
75
Quant.
86
85
82
Bn
4-CN–Bn
4-Br–Bn
4-CF3–Bn
H
96
94
92
NRb
H
H
H
H
6. For leading references in the use of RCM for the synthesis of lactams
see: (a) Ma, S.; Ni, B. Org. Lett. 2002, 4, 639; (b) Huwe, C. M.; Kiehl,
O. C.; Blechert, S. Synlett 1996, 65; (c) Lim, S. H.; Ma, S.; Beak, P. J.
Isolated yields.
NR: No reaction.
b