I. Pravst et al. / Tetrahedron 64 (2008) 5191–5199
5199
Urbano, A. J. Org. Chem. 1995, 60, 5328–5331; Carreno, M. C.; Ruano, J. L. G.; Sanz,
G.; Toledo, M. A.; Urbano, A. Tetrahedron Lett. 1996, 37, 4081–4084; Sadashiv, K.;
Yadav, J. S. Tetrahedron Lett. 2006, 47, 991–995; (b) Acetonitrile: Oberhauser, T.
J. Org. Chem. 1997, 62, 4504–4506; (c) Dimethylformamide: Mitchell, R. H.; Lai,
Y. H.; Williams, R. V. J. Org. Chem. 1979, 44, 4733–4735; Yamada, K.; Kurokawa,
T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630–6631; Chen,
C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696–13697.
8. (a) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T.
Chem. Commun. 2004, 470–471; (b) Ahmad, S. M.; Braddock, D. C.; Cansell, G.;
Hermitage, S. A. Tetrahedron Lett. 2007, 48, 915–918.
9. (a) Goud, B. S.; Desiraju, G. R. J. Chem. Res., Synop. 1995, 244–245; (b) Sarma, J.
A. R. P.; Nagaraju, A. J. Chem. Soc., Perkin Trans. 2 2000, 1113–1118; (c) Sarma, J.
A. R. P.; Nagaraju, A.; Majumdar, K. K.; Samuel, P. M.; Das, I.; Roy, S.; McGhie, A.
J. J. Chem. Soc., Perkin Trans. 2 2000, 1119–1123; (d) Rahman, A. N. M. M.; Bishop,
R.; Tan, R.; Shan, N. Green. Chem. 2005, 7, 207–209; (e) Imanzadeh, G. K.;
Zamanloo, M. R.; Eskandari, H.; Shayesteh, K. J. Chem. Res., Synop. 2006,
151–153; (f) Pravst, I.; Zupan, M.; Stavber, S. Green. Chem. 2006, 8, 1001–1005.
10. Isaacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Group UK: Essex,
1995, pp 392–397.
11. Bordwell, F. G.; Cornforth, F. J. J. Org. Chem. 1978, 43, 1763–1768.
12. (a) Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2000, 1323–1324; (b)
Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2002, 488–489; (c) Pavlinac, J.;
Zupan, M.; Stavber, S. J. Org. Chem. 2006, 71, 1027–1032.
13. Arbuj, S. S.; Waghmode, S. B.; Ramaswamy, A. V. Tetrahedron Lett. 2007, 48,
1411–1415.
14. (a) Yang, D.; Yan, Y. L.; Lui, B. J. Org. Chem. 2002, 67, 7429–7431; (b) Guha, S. K.;
Wu, B.; Kim, B. S.; Baik, W.; Koo, S. Tetrahedron Lett. 2006, 47, 291–293; (c)
Hoffman, R. V.; Weiner, W. S.; Maslouh, N. J. Org. Chem. 2001, 66, 5790–5795
and references cited therein.
15. Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L. J. Am. Chem. Soc. 2001, 123,
8701–8708.
4.6. Determination of rate order constants for functionali-
zation of 1-phenylethanone (1), 1-(4-methoxy-
phenyl) (25a) and 1-(4-trifluoromethyl)-ethanone
(25e) with NBS under SFRC at 40 8C
To a thermostatted mixture of substrate (2 mmol) and PTSA,
NBS (2 mmol) was added. The flask with reaction mixture was then
rotated in a thermostatted bath using a Bu¨chi R124 apparatus.
During reaction, some of the reaction mixture was removed from
the flask into a water solution of NaHSO3 (quenching) and after
micro-isolation with CDCl3, conversion was determined using 1H
NMR. First order rate constants were calculated from Eq. 1:
40 ꢀC
ln[(n0ꢁnt)/n0]¼kBrt and a linear relationship was found with k
Br
1.6ꢂ10ꢁ3, 1.8ꢂ10ꢁ3 and 0.6ꢂ10ꢁ3 sꢁ1 for 1, 25a and 25b, re-
spectively, with R2 being over 0.99. These results were determined
to be reproducible while first rate order was also confirmed by
experiments using a different substrate–NBS ratio.
Relative reactivities of ketones 1, 22a–c, 25a–c,e,f, 30a–c were
determined by competitive reactions with NBS under SFRC at 20 ꢀC
as follows: Substrate (1 mmol) and acetophenone (1, 1 mmol) were
triturated together with PTSA (0.1 mmol) in porcelain mortar for
2 min. NBS(1 mmol) was added totheliquidreactionmixture, which
was then triturated for 2 min. After 24 h, water was added (10 mL),
followed by usual extraction procedure. Product mixture was ana-
16. Orita, A.; Uehara, G.; Miwa, K.; Otera, J. Chem. Commun. 2006, 4729–4731.
17. Nakamatsu, S.; Toyota, S.; Jones, W.; Toda, F. Chem. Commun. 2005, 3808–3810.
18. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456–463.
19. (a) Dubois, J. E.; El-Alaoui, M.; Toullec, J. J. Am. Chem. Soc. 1981, 103, 5393–5401;
(b) Jefferson, E. A.; Keeffe, J. R.; Kresge, A. J. J. Chem. Soc., Perkin Trans. 2 1995,
2041–2046.
20. Satoh, T.; Mizu, Y.; Kawashima, T.; Yamakawa, K. Tetrahedron 1995, 51, 703–710.
21. Kim, K.; Mani, S. R.; Shine, H. J. J. Org. Chem. 1975, 40, 3857–3862.
22. Yoon, S. C.; Cho, J.; Kim, K. J. Chem. Soc., Perkin Trans. 1 1998, 109–116.
23. Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005, 70, 4267–4271.
24. Nair, V.; Panicker, S. B.; Augustine, A.; George, T. G.; Thomas, S.; Vairamani, M.
Tetrahedron 2001, 57, 7417–7422.
lyzed using 1H NMR. Applying this known competitive technique,
rel
relative rate factors (kBrerl) were calculated from Eq. 2: k ¼kA/
Br
kB¼log[A/(AþX)]/log[B/(BþY)], derived from the Ingold–Shaw53 re-
lation, where A and B are molar amounts of the starting material and
X and Y are molar amounts of products derived from them (molar
amounts of compounds in the reaction mixture after reaction time).
Acknowledgements
25. Dolenc, D. Synth. Commun. 2003, 33, 2917–2924.
26. Besse, P.; Sokoltchik, T.; Veschambre, H. Tetrahedron: Asymmetry 1998, 9, 4441–
4457.
This research was supported by the Slovenian Research Agency
(ARRS, programme P1-0134) and the Young Researcher Programme
(24300dI.P.) of the Republic of Slovenia. We are grateful to the staff
of the National NMR Centre at the National Institute of Chemistry in
Ljubljana, the staff of the Mass Spectroscopy Centre at the ‘Jozef
27. Ochiai, M.; Kitagawa, Y.; Yamamoto, S. J. Am. Chem. Soc. 1997, 119, 11598–11604.
28. Zheng, B.; Srebnik, M. Tetrahedron Lett. 1995, 36, 5665–5668.
29. Hannaby, M.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1992, 3007–3013.
30. Moreau, P.; Casadevall, A.; Casadevall, E. Bull. Soc. Chim. Fr. 1969, 6, 2013–2020.
31. Bernstein, J. Adamantyl Glyoxals; Squibb & Sons: New York, NY, 1969; [US
3465041].
32. Sket, B.; Zupan, M. Synth. Commun. 1989, 19, 2481–2487.
33. Johnson, W. S.; Anderson, J. M.; Shelberg, W. E. J. Am. Chem. Soc. 1944, 66, 218–222.
34. Meshram, H. M.; Reddy, P. N.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2005, 46,
623–626.
ˇ
Stefan’ Institute in Ljubljana and to T. Stipanovic and Prof. B.
Stanovnik for elemental combustion analysis.
References and notes
35. Posner, G. H.; Switzer, C. J. Am. Chem. Soc. 1986, 108, 1239–1244.
36. Huang, Z. Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320–5326.
37. Borowitz, I. J.; Parnes, H. J. Org. Chem. 1967, 32, 3560–3564.
38. Park, C. H.; Givens, R. S. J. Am. Chem. Soc. 1997, 119, 2453–2463.
39. Spivak, C. E.; Harris, F. L. J. Org. Chem. 1972, 37, 2494–2497.
40. Elslager, E. F.; Worth, D. F. New Thiazolobenzodiazipine Compounds and Methods
for Their Production; Parke, Davies: Detroit, MI, 1971 [US 3560515].
41. Adams, R. J. Am. Chem. Soc. 1919, 41, 248–270.
42. Schroder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.; Stammler, H. G.; Stammler,
A.; Pfeiffer, W. D.; Tschesche, H. J. Med. Chem. 2001, 44, 3231–3243.
43. Sanfilippo, P. J.; Urbanski, M. J.; Beers, K. N.; Eckardt, A.; Falotico, R.; Ginsberg,
M. H.; Offord, S.; Press, J. B.; Tighe, J.; Tomko, K.; Andrade-Gordon, P. J. Med.
Chem. 1995, 38, 34–41.
44. Bauer, D. P.; Macomber, R. S. J. Org. Chem. 1975, 40, 1990–1992.
45. Starostin, E. K.; Aleksandrov, A. V.; Shchetinin, S. V.; Gushchin, V. V.; Nikishin,
G. I. Bull. Acad. Sci. USSR Div. Chem. Sci. 1989, 38, 93–95.
46. Horiuchi, C. A.; Kiji, S. Bull. Chem. Soc. Jpn. 1997, 70, 421–426.
47. Park, Y. D.; Kim, J. J.; Cho, S. D.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Synthesis 2005,
1136–1140.
1. Continuation of our preliminary communication: Pravst, I.; Zupan, M.; Stavber,
S. Tetrahedron Lett. 2006, 47, 4707–4710.
2. (a) Handbook of Green Chemistry and Technology; Clark, J., Macquarrie, D., Eds.;
Blackwell Science: Oxford, 2002; (b) Chemistry in Alternative Reaction Media;
Adams, D. J., Dyson, P. J., Tavener, S. J., Eds.;John Wiley & Sons: Chichester, UK, 2004.
3. (a) Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim, 2003; (b)
Supported Reagents and Catalysts in Chemistry; Hodnett, B. K., Kybett, A. P., Clark,
J. H., Smith, K., Eds.; The Royal Society of Chemistry: Cambridge, 1998; (c) Solid
Supports and Catalysts in Organic Synthesis; Smith, K., Ed.; Ellis Horwood: New
York, NY, 1992; (d) Green Separation Processes, Fundamentals and Applications;
Afonso, C. A. M., Crespo, J. G., Eds.; Wiley-VCH: Weinheim, 2005.
4. (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025–1074; (b) Cave, G. W. V.;
Raston, C. L.; Scott, J. L. Chem. Commun. 2001, 2159–2169; (c) Walsh, P. J.; Li, H.;
De Parrodi, C. A. Chem. Rev. 2007, 107, 2503–2545; (d) Garay, A. L.; Pichon, A.;
James, S. L. Chem. Soc. Rev. 2007, 36, 846–855.
5. Smith, M. B.; March, J. March’s Advanced Organic Chemistry, Reactions, Mecha-
nisms and Structure, 6th ed.; John Wiley & Sons: New Jersey, NJ, 2006.
6. (a) Prakash, G. K. S.; Mathew, T.; Hoole, D.; Esteves, P. M.; Wang, Q.; Rasul, G.;
Olah, G. A. J. Am. Chem. Soc. 2004, 126, 15770–15776; (b) Lee, J. C.; Bae, Y. H.;
Chang, S. K. Bull. Korean Chem. Soc. 2003, 24, 407–408; (c) Bovonsombat, P.;
McNelis, E. Synthesis 1993, 237–241; (d) Das, B.; Venkateswarlu, K.; Mahender,
G.; Mahender, I. Tetrahedron Lett. 2005, 46, 3041–3044.
7. (a) Ionic liquids: Rajagopal, R.; Jarikote, D. V.; Lahoti, R. J.; Daniel, T.; Srinivasan, K.
V. Tetrahedron Lett. 2003, 44,1815–1817; Yadav, J. S.; Reddy, B. V. S.; Reddy, R. S. R.;
Basak, A. K.; Narsaiah, A. V. Adv. Synth. Catal. 2004, 346, 77–82; Meshram, H. M.;
Reddy, P. N.; Vishnu, P.; Carreno, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.;
48. Pelizzet, E.; Verdi, C. J. Chem. Soc., Perkin Trans. 2 1973, 808–811.
49. Meltzer, P. C.; Staskun, B. J. S. Afr. Chem. Inst. 1974, 27, 119–123.
50. Shawali, A. S.; Fahmi, A. A. Ind. J. Chem. 1975, 13, 105–108.
51. Boger, D. L.; Zhu, Y. J. Org. Chem. 1994, 59, 3453–3458.
52. Bekaert, A.; Provot, O.; Rasolojaona, O.; Alami, M.; Brion, J. D. Tetrahedron Lett.
2005, 46, 4187–4191.
53. Ingold, C. K.; Shaw, F. R. J. Chem. Soc. 1927, 2918–2926.