4014
W. Lu, C. Xi / Tetrahedron Letters 49 (2008) 4011–4015
Table 3 (continued)
ture 8 coupled with 7 via tail-to-head to form compound
10, which underwent oxidation process and hydrolysis to
afford quinone anil 3 and anil 4, respectively.
In summary, we have developed a CuCl-catalyzed oxi-
dative coupling reaction of primary aromatic amines under
atmospheric conditions to afford azo derivatives, anils, and
quinone anils, respectively. This approach was highly effi-
cient, low cost, and easy handling.
Entry
Substract
Product
Yieldb (%)
Et
Et
Et
Et
NH2
5
67
N
N
NH
NH
4k
4l
Et
Et
1k
iPr
iPr
iPr
Acknowledgments
NH2
6
49
This work was supported by the National Natural Sci-
ence Foundation of China (20572058). We thank Mr. Miao
Shen for the single crystal X-ray analysis.
iPr
iPr
iPr
1l
a
Reaction conditions: disubstituted benzeneamine (1 mmol), solvent
(5 mL), CuCl (1 mmol), and products (3j–l) were gotten after the reaction
mixture was quenched by 3 N HCl; the products (4j–l) were gotten after
the reaction mixture was quenched by a solution of K2CO3.
Supplementary data
b
Isolated yields.
Supplementary data associated with this article can be
References and notes
1. Hunger, K. Industrial Dyes: Chemistry, Properties, Applications;
Wiley-VCH: Weinheim, 2003.
2. (a) Anderson, R. G.; Nickless, G. Analyst 1967, 92, 207; (b) Ashutosh,
P. N. D.; Mehrotra, J. K. Colourage 1979, 26, 25.
3. (a) Athey, R. D., Jr. Eur. Coatings J. 1998, 3, 146; (b) Sheppard, C. S.
Encycl. Polym. Sci. Eng. 1985, 2, 143.
4. (a) Hoult, J. R. S. Drugs 1986, 32, 18; (b) Sandborn, W. J. Am. J.
Gastroenterol. 2002, 97, 2939.
5. (a) Cisnetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Masiero,
S.; Negri, F.; Pieraccini, S.; Spada, G. P. Chem. Eur. J. 2004, 10, 2011;
(b) Tripathy, S.; Kim, D. Y.; Li, L.; Kumar, J. Pure Appl. Chem.
1998, 70, 1267.
6. (a) Jain, A.; Gupta, Y.; Jain, S. K. Crit. Rev. Ther. Drug Carrier Syst.
2006, 23, 349; (b) Vanden Mooter, G.; Maris, B.; Samyn, C.;
Augustijns, P.; Kinget, R. J. Pharm. Sci. 1997, 86, 1321.
7. Wheeler, O. D.; Gonzales, D. Tetrahedron 1964, 20, 189.
8. Baumgarten, H. E.; Staklis, A.; Miller, E. M. J. Org. Chem. 1965, 30,
1203.
Fig. 1. X-ray structures of 4j (CCDC 683434).
Air
Cu(I)
5
Cu(II)
NH2
NH2
NH2
Cu(II)
NH2
9. Birchall, J. M.; Haszeldine, R. N.; Kemp, J. E. G. J. Chem. Soc.,
Chem. Commun. 1970, 449.
8
7
1
10. (a) Wenkert, K.; Wickberg, B. J. Am. Chem. Soc. 1962, 84, 4914; (b)
Werkurt, E.; Angell, E. C. Synth. Commun. 1988, 18, 1331.
11. Srivastav, R. G.; Pandey, R. L.; Venkatramani, P. S. J. Indian Chem.,
Sect. B. 1981, 20, 995.
12. Neu, R. Ber. Dtsch. Chem. Ges. 1939, 72, 1505.
13. Burdon, J.; Morton, C. J.; Thomas, D. F. J. Chem. Soc. 1965,
2621.
6
H
H
N
O2
N
N
N
+
7
7
2 H+
2 H+
H2O
9
2
14. Goldstein, S. L.; McNelis, E. J. Org. Chem. 1973, 38, 183.
15. Huang, H.; Sommerfeld, D.; Dunn, B. C.; Lloyd, C. R.; Eyring, E. M.
J. Chem. Soc., Dalton Trans. 2001, 1301.
16. Firouzabadi, H.; Mohajer, D.; Moghadam, M. E. Bull. Chem. Soc.
Jpn. 1988, 61, 2185.
H
O2
+
N
3
O
8
7
N
NH2
H3O+
10
O2
OH-
17. Farhadi, S.; Zaringhadam, P.; Sahamieh, R. Z. Acta Chim. Slov. 2007,
54, 647.
N
NH
4
18. (a) Waghmode, S. B.; Sabne, S. M.; sivasanker, S. Green Chem. 2001,
3, 285; (b) Suresh, S.; Joeeph, R.; Jayachandran, B.; Pol, A. V.;
Vinod, M. P.; Sudalai, A.; Sonawane, H. R.; Ravindranathan, T. R.
Tetrahedron 1995, 51, 11305; (c) Gontier, S.; Tuel, A. J. Catal. 1995,
157, 124; (d) Selvam, T.; Ramaswamy, A. V. Chem. Commun. 1996,
1215.
Scheme 2.
pound 9, which underwent another oxidation process to
form the final product azobenzene 2. The resonance struc-