1258
G. Pandey et al.
LETTER
Diastereomeric purity of 5 in >97% was established by
comparing the HPLC analysis (reverse phase, C18 Bonda
pack 0.5 µm column) with the authentic mixture prepared
by following the reported8 procedure. The characteriza-
tion and confirmation of the 2,5-trans-stereochemistry for
Acknowledgement
One of us (RS) is thankful to CSIR, New Delhi for financial support.
References and Notes
1
5 was established by detailed H NMR, 13C NMR and
(1) Westley, J. W. Ed., Polyether Antibiotics; Naturally
Occurring Acid Ionophores. Marcell-Dekkar,New York,
1983, Vol. I & II.
mass spectral analysis. DCN was recovered almost quan-
titatively (≈ 98 %) at the end of the reaction.
(2) (a) Rupprecht, J.K.; Hui, Y.- H.; Mc Laughlin, J. L., J. Natural
Products, 1990, 53, 237. (b) Hoppe, R.; Scharf, H.-D.
Synthesis 1995, 1447. (c) Koert, U., Synthesis, 1995, 115.
(3) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
(4) Doi, M.; Ishida, T.; Kobayashi, M.; Kitagawa, I., J. Org.
Chem. 1991, 56, 3629.
Table: trans-selective Oxyselenylation of 1,n-diolefins
(5) Kotsuki, H.; Ushio, Y.; Kadota, I.; Ochi, M., J. Org. Chem.
1989, 54, 5153. and references cited therein.
(6) (a) Elliott, M.C. J. Chem. Soc. Perkin Trans.1 1998,4175.
(b) Eluterio, A.; Candenas, M-L.; Perez, R.; Ravelo, J.L. and
Martin, J. D. Chem. Rev. 1995, 95, 1953. (c) Kotsuki, H.,
Synlett, 1992, 97. (d) Taryn, L.B. Boivin, Tetrahedron 1987,
43, 3309. (e) Moody, C.J.; Martin, J.D. Studies in Natural
Products: Atta-ur-Rehman 1992, vol. 10, 201.
(7) (a) Kurth, M. J.; Rodriguez, M. J. J. Am. Chem. Soc. 1987,
109, 7577 and references cited therein. (b) Kurth, M. J.;
Rodriguez, M. J. Tetrahedron 1989, 45, 6963.
(8) (a) Uemura, S.; Toshimitsu, A.; Aoai, T.; Okano, M.
Tetrahedron Lett. 1980, 21, 1533. (b) Uemura, S.; Toshimitsu,
A.; Aoai, T.; Okano, M. Chem. Lett. 1979, 1359. (c)
Toshimitsu, A.; Uemura, S.; Okano, M., J. Chem. Soc Chem.
Commun. 1982, 87.
(9) (a) Pandey, G.; Rao, V. J.; Bhalerao, U. T. J. Chem. Soc.
Chem. Commun. 1989, 416.( b) Pandey, G.; Soma Shekhar,
B.B.V., J. Org. Chem., 1992, 57, 4019.
(10) (a) Pandey, G.; Soma Sekhar, B.B.V. J. Chem. Soc. Chem.
Commun. 1993, 1636. (b) Pandey, G.; Soma Sekhar, B.B.V.,
Tetrahedron, 1995, 51, 1483.
(11) For a recent syn-addition approach to trans-2,5-dialkyl
tetrahydrofuran, see Towne, T.B.; McDonald, F.E. J. Am.
Chem. Soc. 1997, 119, 6022.
(12) For direct addition of a nucleophile to a radical-cation
possessing stabilising functionalities, see Reitstoen, B.;
Parker, V. D. J. Am. Chem. Soc. 1991, 113, 6954.
(13) Representative 1H NMR and 13C NMR data of cyclic ethers:
Compound 5; 1H NMR (200 MHz, CDCl3): δ 7.53 (4H, m),
7.33 (6H, m), 4.31 (1H, m), 4.17 (1H, m), 3.16 (2H, m), 3.01
(2H, m), 2.15 (2H, m), 1.76 (2H, m). 13C NMR (50 MHz,
CDCl3): δ 132.58, 132.49, 130.92, 129.43, 129.09, 126.65,
79.18, 78.70, 33.20, 32.13, 31.26. Compound 12: 1H NMR
(200 MHz, CDCl3) δ 7.60 (4H, m), 7.25 (6H, m), 3.90 (1H,
m), 3.75 (3H, m), 3.55 (1H, dd, J = 5.3, 11.2 Hz), 3.05 (4H,
m), 2.73 (1H, dd, J = 5.3, 11.2 Hz). 13C NMR (50 MHz,
CDCl3) δ 133.32, 133.15, 129.50, 127.48, 75.54, 70.61, 70.38,
69.50, 28.68, 28.32. Compound 14: 1H NMR (200 MHz,
CDCl3) δ 7.50 (2H, m), 7.24 (3H, m), 4.08 (1H, m), 3.88 (1H,
m), 3.71 (1H, m), 3.08 (1H, dd, J = 7.2, 12.9 Hz), 2.95 (1H, dd,
J = 7.2, 12.9 Hz), 2.05 (2H, m), 1.87 (2H, m), 1.59 (2H, m),
1.87 (3H, bs). 13C NMR (50 MHz, CDCl3) δ 132.77, 130.56,
129.24, 127.03, 78.55, 68.56, 33.26, 31.75, 26.17.
(14) (a) Pandey, G.; Soma Sekhar, B.B.V.; Bhalerao, U.T. J.Am.
Chem. Soc. 1990, 112, 5650. (b) Pandey. G.; Soma Sekhar,
B.B. V. J. Org. Chem. 1994, 59, 7367.
In order to establish the generality of this reaction, number
of substrates (6–10) were studied and the results are sum-
marized in the Table. The α,α′-trans-dialkyl stereochem-
istry in each product was established, beyond doubt, by
detailed spectral analyses.13 In each case, the products
were isolated in the diselenylated form except for 9 where
monodeselenylated product 14 was obtained, obviously,
by the further oxidative PET cleavage of -C-Se- bond as
reported by us earlier.14
In conclusion, a novel strategy involving atom economy
concept15 has been developed for the synthesis of α,α′-
trans cyclic ethers by the oxyselenylation of dienes utiliz-
ing in situ generated electrophilic selenium species. Fur-
ther, application of this strategy utilizing optically active
diaryldiselenide is in progress .
(15) (a) Trost, B.M., Science, 1991, 254, 1471. (b) Trost, B. M.
Angew. Chem. Int. Ed. Eng. 1995, 34, 259.
Article Identifier:
1437-2096,E;1999,0,08,1257,1258,ftx,en;L06799ST.pdf
Synlett 1999, No. 8, 1257–1258 ISSN 0936-5214 © Thieme Stuttgart · New York