LETTER
Mild Bischler–Napieralski-Type Cyclization to 3,4-Dihydroisoquinolines
2809
Tan, J.; Grozinger, K. Tetrahedron Lett. 1998, 39, 6609.
(c) Sánchez-Sancho, F.; Mann, E.; Herradón, B. Synlett
2000, 509. (d) Nicoletti, M.; O’Hagan, D.; Slawin, A. M. Z.
J. Chem. Soc., Perkin Trans. 1 2002, 116. (e) Chern, M.-S.;
Li, W.-R. Tetrahedron Lett. 2004, 45, 8323.
the literature. Yields range from good to excellent in the
case of activated b-phenylethylamides and are compara-
ble to or even higher than standard Bischler–Napieralski
cyclizations. The extremely mild conditions employed
make our TPPBr2-based protocol most appealing as an al-
ternative for the assembly of the 3,4-dihydroisoquinoline
skeleton, especially in the presence of sensitive functional
groups that might be prone to side reactions using classic
methodologies.
(9) Snyder, H. R.; Werber, F. X. J. Am. Chem. Soc. 1950, 72,
2962.
(10) (a) Itoh, N.; Sugasawa, S. Tetrahedron 1957, 1, 45.
(b) Itoh, N.; Sugasawa, S. Tetrahedron 1959, 6, 16.
(11) Kanaoka, Y.; Sato, E.; Yonemitsu, O.; Ban, Y. Tetrahedron
Lett. 1964, 5, 2419.
(12) Ramesh, D.; Srinivasan, M. Synth. Commun. 1986, 16, 1523.
(13) Judeh, Z. M. A.; Ching, C. B.; Bu, J.; McCluskey, A.
Tetrahedron Lett. 2002, 43, 5089.
(14) Hegedüs, A.; Hell, Z.; Potor, A. Catal. Commun. 2006, 7,
1022.
Acknowledgment
We thank MiUR (Ministero dell’Università e della Ricerca Scienti-
fica) for financial support (COFIN 2005).
(15) Saito, T.; Yoshida, M.; Ishikawa, T. Heterocycles 2001, 54,
437.
(16) Larsen, R. D.; Reamer, R. A.; Corley, E. G.; Davis, P.;
Grabowski, E. J. J.; Reider, P. J.; Shinkai, I. J. Org. Chem.
1991, 56, 6034.
(17) Bhattacharijya, A.; Chattopadhyay, P.; Bhaumik, M.;
Pakrashi, S. C. J. Chem. Res., Synop. 1989, 228.
(18) (a) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.;
Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W.
J. Chem. Soc., Chem. Commun. 1995, 2551. (b) Wang,
Y.-C.; Georghiou, P. E. Synthesis 2002, 2187.
(19) Boruah, M.; Konwar, D. J. Org. Chem. 2002, 67, 7138.
(20) Spaggiari, A.; Blaszczak, L. C.; Prati, F. Org. Lett. 2004, 6,
3885.
References and Notes
(1) (a) Aniszewski, T. Alkaloids – Secrets of Life; Elsevier:
Amsterdam, 2007. (b) Shulgin, A. T.; Perry, W. E. The
Simple Plant Isoquinolines; Transform Press: London,
2003. (c) Lundström, J. In The Alkaloids, Vol. 21; Brossi,
A., Ed.; Academic Press: New York, 1983, 255–327.
(d) The Alkaloids, Vol. 7; Manske, R. H. F., Ed.; Academic
Press: New York, 1960. (e) The Alkaloids, Vol. 4; Manske,
R. H. F.; Holmes, H. L., Eds.; Academic Press: New York,
1954.
(2) For recent reviews, see: (a) Bentley, K. W. Nat. Prod. Rep.
2006, 20, 444. (b) Bentley, K. W. Nat. Prod. Rep. 2005, 22,
249. (c) Bentley, K. W. Nat. Prod. Rep. 2004, 21, 395.
(d) Bentley, K. W. Nat. Prod. Rep. 2003, 20, 342.
(3) Bischler, A.; Napieralski, B. Ber. Dtsch. Chem. Ges. 1893,
26, 1903.
(21) Spaggiari, A.; Davoli, P.; Blaszczak, L. C.; Prati, F. Synlett
2005, 661.
(22) (a) Vaccari, D.; Davoli, P.; Bucciarelli, M.; Spaggiari, A.;
Prati, F. Lett. Org. Chem. 2007, 4, 319. (b) Vaccari, D.;
Davoli, P.; Spaggiari, A.; Prati, F. Synlett 2008, 1317.
(23) (a) Acetamides 1a–e,h were prepared by treatment of the
parent b-phenylethylamine with Ac2O, whereas for amides
1f,g the appropriate acyl chloride was employed instead.
Except for 1a and 1b, which were obtained from
commercially available b-phenyl- and 4-methoxy-b-
phenylethylamine, respectively, in all other cases the
starting b-phenylethylamine was synthesized by
condensation of the corresponding aromatic aldehyde with
nitromethane in the presence of AcOH and NH4OAc, and
subsequent reduction of the resulting nitrostyrene with LAH
in THF.7f,23b In particular, 3-methoxybenzaldehyde,
piperonal, veratryl aldehyde, and 3,4,5-trimethoxybenz-
aldehyde were used for 1c,d,e–g,h, respectively. In the latter
case, the original procedure for the synthesis of mescaline
was used.23c All synthesized b-phenylethylamines were used
without any further purification. (b) Sawant, D.; Kumar, R.;
Maulik, P. R.; Kundu, B. Org. Lett. 2006, 8, 1525.
(c) Späth, E. Monatsh. Chem. 1919, 40, 129.
(4) For reviews, see: (a) Whaley, W. M.; Govindachari, T. R.
Org. React. 1951, 6, 74. (b) Kametani, T.; Fukumoto, K. In
The Chemistry of Heterocyclic Compounds, Part 1, Vol. 38;
Grethe, G.; Weissberger, A.; Taylor, E. C., Eds.; Wiley:
New York, 1981, 139–274. (c) Fowler, F. W. In
Comprehensive Heterocyclic Chemistry, Vol. 2; Katritzky,
A. R.; Rees, C. W., Eds.; Pergamon: Oxford, 1984, 410–
416. (d) Jones, G. In Comprehensive Heterocyclic
Chemistry II, Vol. 5; Katritzky, A. R.; Rees, C. W.; Scriven,
D. F. V., Eds.; Elsevier: Oxford, 1996, 179–181.
(5) For reviews, see: (a) Larghi, E. L.; Amongero, M.; Bracca,
A. B. J.; Kaufman, T. S. Arkivoc 2005, (xii), 98.
(b) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev.
2004, 104, 3341. (c) Cox, E. D.; Cook, J. M. Chem. Rev.
1995, 95, 1797.
(6) (a) Nagubandi, S.; Fodor, G. J. Heterocycl. Chem. 1980, 17,
1457. (b) Nagubandi, S.; Fodor, G. Tetrahedron 1980, 36,
1279. (c) Gal, J.; Wienkam, R. J.; Castagnoli, N. Jr. J. Org.
Chem. 1974, 39, 418. (d) Fodor, G.; Gal, J.; Phillips, B. A.
Angew. Chem., Int. Ed. Engl. 1972, 11, 919.
(7) For selected examples, see: (a) Martin, S. F.; Garrison, P. J.
J. Org. Chem. 1982, 47, 1513. (b) Bosch, J.; Domingo, A.;
Linares, A. J. Org. Chem. 1983, 48, 1075. (c) Sotomayor,
N.; Domínguez, E.; Lete, E. J. Org. Chem. 1996, 61, 4062.
(d) Ishikawa, T.; Shimooka, K.; Narioka, T.; Noguchi, S.;
Saito, T.; Ishikawa, A.; Yamazaki, E.; Harayama, T.; Seki,
H.; Yamaguchi, K. J. Org. Chem. 2000, 65, 9143.
(e) Capilla, A. S.; Romero, M.; Pujol, M. D.; Caignard,
D. H.; Renard, P. Tetrahedron 2001, 57, 8297. (f) Batra, S.;
Sabnis, Y. A.; Rosenthal, P. J.; Avery, M. A. Bioorg. Med.
Chem. 2003, 11, 2293.
(24) Synthesis of 6,7-Dimethoxy-1-phenyl-3,4-dihydro-
isoquinoline (2f)
Triphenyl phosphite (0.89 mL, 3.41 mmol) was dissolved in
anhyd CH2Cl2 (20 mL) and cooled to –60 °C. Bromine (0.18
mL, 3.41 mmol) and anhyd Et3N (0.51 mL, 3.69 mmol) were
introduced sequentially under argon flow. N-[2-(3,4-dimeth-
oxyphenyl)ethyl]benzamide (1f, 819 mg, 2.84 mmol) was
then added in one portion to the bright yellow solution
maintained at the same temperature under vigorous stirring.
The resulting mixture was gradually warmed to r.t. over a
2 h period, and left to stir overnight. Subsequently, the dark
reaction mixture was extracted with 3 M HCl (3 × 15 mL),
the combined aqueous layers were basified with 10% aq
NaOH until pH = 11 and extracted with CH2Cl2 (3 × 15 mL).
(8) For selected examples, see: (a) Doi, S.; Shirai, N.; Sato, Y.
J. Chem. Soc., Perkin Trans. 1 1997, 2217. (b)Wang, X.-J.;
Synlett 2008, No. 18, 2807–2810 © Thieme Stuttgart · New York