3938
Y. A. Volkova et al. / Tetrahedron Letters 49 (2008) 3935–3938
7. (a) Nichols, P. L.; Magnusson, A. B.; Ingham, J. D. J. Am. Chem.
Soc. 1953, 75, 4255; (b) Ingham, J. D.; Nichols, P. L. J. Am. Chem.
Soc. 1954, 76, 4477.
8. Marans, N. S.; Zelinski, R. P. J. Am. Chem. Soc. 1950, 72, 5330.
9. Iranpoor, N.; Salehi, P. Tetrahedron 1995, 51, 909.
dinitrate 2l was the only product of this reaction (Table 1,
entry 12).
The structures of all the synthesized nitrates were estab-
1
lished unequivocally by H and 13C NMR spectroscopy
and elemental analysis.
10. (a) Nielsen, A. T. Nitrocarbons; Wiley: New York, 1995; pp 1–76 ; (b)
Rathore, R.; Kochi, J. K. J. Org. Chem. 1996, 61, 627; (c) Baum, K.;
Berkowitz, P. T.; Grakauskas, V.; Archibald, T. G. J. Org. Chem.
1983, 48, 2953; (d) Mayants, A. G.; Pyreseva, K. G.; Gordeichuk, S.
S. Zh. Org. Khim. (Russ.) 1986, 22, 2120; . Russ. J. Org. Chem. (Engl.
Transl.) 1986, 22, 1900.
11. (a) Volkova, Yu. A.; Ivanova, O. A.; Budynina, E. M.; Averina, E. B.;
Kuznetsova, T. S.; Zefirov, N. S. Tetrahedron 2008, 64, 3548–3553; (b)
Volkova, Yu. A.; Ivanova, O. A.; Averina, E. B.; Budynina, E. M.;
Kuznetsova, T. S.; Zefirov, N. S. Dokl. Akad. Nauk (Russ.) 2008,
419, 500–503.
The method suggested for the nitration of epoxides with
TNM has a remarkable advantage: even simple epoxides
such as 1a,f did not polymerize under the action of
TNM, although this problem arises when other nitrating
agents are employed for epoxide opening.
In conclusion, the good regioselectivity, high yields of
products and the mildness of the reaction conditions, sim-
plicity of the work-up and availability of the reagents make
this method an efficient and useful alternative to other
methods for the preparation of b-hydroxy nitrates.
Caution: Although we have not met any problems in
handling these compounds, full safety precautions should
be taken due to their potentially explosive nature.
12. The chemistry of the nitro and nitroso groups; Feuer, H., Ed.;
Part II, R. E. Krieger Publishing Company: New York, 1981; p
292.
13. General procedure: Triethylamine (0.14 ml, 1 mmol) after cooling in
an ice bath was added gradually to a solution of TNM (0.22 ml,
2 mmol) in 1,4-dioxane (2 ml). The mixture was stirred for 5 min with
cooling, and then the corresponding epoxide (1 mmol) was added.
The resulting mixture was stirred at room temperature for the
specified time according to Table 1. TLC and NMR spectra were used
to monitor the progress of the reactions. The solvent was evaporated
and the product was isolated by column chromatography (hexane–
ethyl acetate, 5:1).
Acknowledgements
We thank the Division of Chemistry and Materials Sci-
ence RAS (Program N 1.5), the President’s grant ‘Support
of Leading Scientific School’ N 5538.2008.3 (academician
N.S. Zefirov) and the Russian Foundation for Basic Re-
search (Project 07-03-00685-a) for financial support of this
work.
2-Hydroxyoctyl nitrate (2g), major isomer. Yellow oil, Rf 0.1 (CHCl3).
3
1H NMR (400 MHz, CDCl3): d 0.89 (t, J = 7.1 Hz, 3H, CH3), 1.30–
1.52 (m, 10H), 2.22 (br s, 1H, IH), 3.91–3.96 (m, 1H, CH), 4.35 (dd,
2J = 11.1, 3J = 7.6 Hz, 1 H, CH2), 4.50 (dd, 2J = 11.1, 3J = 3.0 Hz,
1H, CH2). 13C NMR (100 MHz, CDCl3): d 14.0 (CH3), 22.6, 25.2,
29.1, 31.7, 33.2 (CH2), 68.3 (CH), 76.8 (CH2).
1-Hydroxyoctan-2-yl nitrate (2g), minor isomer. Yellow oil, Rf 0.1
(CHCl3). 1H NMR (400 MHz, CDCl3): d 0.89 (t, 3J = 7.1 Hz, 3H,
CH3), 1.30–1.68 (m, 10H), 2.25 (br s, 1H, IH), 3.74 (dd, 2J = 12.7,
3J = 6.3 Hz, 1 H, CH2), 3.83 (dd, 2J = 12.7, 3J = 3.2 Hz, 1H, CH2),
5.09–5.15 (m, 1H, CH). 13C NMR (100 MHz, CDCl3): d 14.0 (CH3),
22.5, 25.2, 29.0, 31.6, 33.2, 62.5 (CH2), 84.9 (CH).
References and notes
1. (a) Grayson, M., In Kirk-Othmer Encyclopedia of Chemical Technol-
ogy; 3rd ed.; Wiley-Interscience: New York, 1980; 11; p 929; (b)
Shiratsuchi, M.; Kawamura, K.; Akashi, T.; Fujii, M.; Ishihama, H.;
Uchida, Y. Chem. Pharm. Bull. 1987, 35, 632.
2. Bron, J.; Sterk, G. J.; Vanden Werf, J. F.; Timmerman, H. Eur. Pat.
Appl. EP. 359335, 1990; Chem. Abstr. 1990, 113, 184719x.
3. Blum, S. W.; Quinn, J. B.; Howe, B. B.; Hefner, M. A.; Winbury, M.
M. J. Pharmacol. Exp. Ther. 1971, 176, 684; Chem. Abstr. 1971, 74,
97581d.
4. (a) Agrawal, J. P.; Hodgson, R. D. In Organic Chemistry of
Explosives; Wiley: Chichester, 2007; pp 87–124; (b) Meyer, R.;
Ko¨hler, J.; Homburg, A. Explosives; Wiley: Weinheim, 2007; (c)
2-(4-Bromophenyl)-2-hydroxyethyl nitrate (3k). White crystals, Rf
0.19 (CHCl3). 1H NMR (400 MHz, CD3OD): d 3.44 (br s, 1H, IH),
3.81 (dd, 2J = 12.6, 3J = 4.0 Hz, 1H, CH2), 3.90 (dd, 2J = 12.6,
3J = 7.8 Hz, 1H, CH2), 5.88 (dd, 3J = 4.0, 7.8 Hz, 1H, CH), 7.25 (d,
2J = 8.6 Hz, 2H, Dh), 7.53 (d, 2J = 8.6 Hz, 2H, Dh). 13C NMR
(100 MHz, CD3OD): d 63.5 (CH2), 85.2 (CH), 123.6(C), 128.4(2
 CH, Ph), 132.2 (2  CH, Ph), 134.9 (C). Anal. Calcd for
C8H8BrNO4: C, 36.67; H, 3.08; N, 5.34. Found: C, 36.82; H, 3.20;
N, 5.55.
´
Urbanski, T. In Chemistry and Technology of Explosives; Pergamon
´
Press: Oxford, 1965; Vol. 2; (d) Urbanski, T. In Chemistry and
14. Ahrem, A. A.; Moiseenkov, A. M.; Dobrynin, V. N. Uspekhi Khim.
(Russ) 1968, 37, 1025; . Chem. Abstr. 1968, 69, 58994.
15. Ivanova, O. A.; Averina, E. B.; Budynina, E. M.; Korlyukov, A. A.;
Antipin, M. Yu.; Kuznetsova, T. S.; Zefirov, N. S. Zh. Org. Khim.
(Russ.) 2005, 41, 1292; . Russ. J. Org. Chem. (Engl. Transl.) 2005, 41,
1265; . Chem. Abstr. 2005, 144, 488328.
Technology of Explosives; Pergamon Press: Oxford, 1984; Vol. 4.
5. Golding, P.; Millar, R. W.; Paul, N. C.; Richards, D. H. Tetrahedron
1993, 49, 7037.
6. (a) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in
Organic Synthesis, 4th ed.; Wiley-Interscience, 2007; p 271; (b) Fabio,
R. D.; Rossi, T.; Thomas, R. J. Tetrahedron Lett. 1997, 38, 3587.