Scheme 4
This approach was further elaborated towards trans-
disubstituted 2,3,4,5-tetrahydro-1,5-benzothiazepines 7 and 8
starting from trans-2,3-disubstituted aziridines 4. Surprisingly,
treatment of 2-(sulfonyloxymethyl)aziridines 4a and 4b with 1.1
equiv of 2-aminothiophenol in THF in the presence of 1.1
equiv of K2CO3 afforded 4-substituted 3-aminobenzothiazepines
7a,b, whereas aziridine 4c was transformed into 2-phenyl-3-
aminobenzothiazepine 8 applying the same reaction conditions
(Scheme 4). In both cases, no traces of the other regioisomers
were identified in the reaction mixtures.
Fig. 1
compounds 7 and of 9.2 Hz between H-2 and H-3 for compound
8.
Apparently, tosylates 4a and 4b are more reactive as com-
pared to mesylate 4c. Indeed, 2-(tosyloxymethyl)aziridines 4a,b
undergo initial nucleophilic displacement of the tosyloxy group
by means of 2-aminothiophenol towards intermediate aziridines
9, which cyclise spontaneously to afford 4-substituted 3-
aminobenzothiazepines 7 (pathway a, Scheme 5). On the other
hand, 2-(mesyloxymethyl)aziridine 4c suffers from initial ring
opening by 2-aminothiophenol at the benzylic position towards
acyclic intermediate 10, followed by cyclization upon nucleophilic
substitution of the mesyloxy moiety (pathway b, Scheme 5).
In conclusion, a highly efficient synthesis of 3-sulfonamido-
2,3,4,5-tetrahydro-1,5-benzothiazepines has been accomplished
starting from easily accessible aziridine substrates. Furthermore,
this approach can be applied successfully for the regio- and
stereocontrolled synthesis of trans-2- or trans-4-substituted 3-
sulfonamido-2,3,4,5-tetrahydro-1,5-benzothiazepines by choice of
the appropriate leaving group.
Notes and references
1 For reviews on 1,5-benzothiazepines, see: (a) A. Levai, J. Heterocycl.
Chem., 2000, 37, 199; (b) A. Levai, Pharmazie, 1999, 54, 719.
2 M. Chaffman and R. N. Brogden, Drugs, 1985, 29, 387.
3 S. Y. Dike, D. H. Ner and A. Kumar, Bioorg. Med. Chem. Lett., 1991,
1, 383.
4 (a) J. Slade, J. L. Stanton, D. Ben-David and G. C. Mazzenga, J. Med.
Chem., 1985, 28, 1517; (b) K. Bajaj, V. K. Srivastava, S. Lata, R.
Chandra and A. Kumar, Indian J. Chem., Sect. B, 2003, 42, 1723.
5 (a) M. M. Baag, M. K. Sahoo, V. G. Puranik and N. P. Argade,
Synthesis, 2007, 457; (b) O. Prakash, A. Kumar, A. Sadana, R. Prakash,
S. P. Singh, R. M. Claramunt, D. Sanz, I. Alkorta and J. Elguero,
Tetrahedron, 2005, 61, 6642; (c) M. Sindler-Kulyk and D. C. Neckers,
J. Org. Chem., 1982, 47, 4914.
6 (a) M. Karikomi and N. De Kimpe, Tetrahedron Lett., 2000, 41, 10295;
(b) M. D’hooghe, A. Waterinckx and N. De Kimpe, J. Org. Chem.,
2005, 70, 227; (c) M. D’hooghe, T. Vanlangendonck, K. W. To¨rnroos
and N. De Kimpe, J. Org. Chem., 2006, 71, 4678; (d) M. D’hooghe and
N. De Kimpe, Chem. Commun., 2007, 1275.
7 M. Karikomi, S. Yamori and T. Toda, Heterocycles, 1993, 35, 619.
8 (a) W. J. Gensler, J. Am. Chem. Soc., 1948, 70, 1843; (b) M. D’hooghe,
I. Kerkaert, M. Rottiers and N. De Kimpe, Tetrahedron, 2004, 60,
3637.
9 (a) T. Ando, S. Minakata, I. Ryu and M. Komatsu, Tetrahedron Lett.,
1998, 39, 309; (b) T. Ando, D. Kano, S. Minakata, I. Ryu and M.
Komatsu, Tetrahedron, 1998, 54, 13485; (c) D. P. Albone, P. S. Aujla,
P. C. Taylor, S. Challenger and A. M. Derrick, J. Org. Chem., 1998,
63, 9569; (d) S. I. Ali, M. D. Nikalje and A. Sudalai, Org. Lett., 1999,
1, 705; (e) A. V. Gontcharov, H. Liu and K. B. Sharpless, Org. Lett.,
1999, 1, 783; (f) V. V. Thakur and A. Sudalai, Tetrahedron Lett., 2003,
44, 989; (g) G. D. K. Kumar and S. Baskaran, Chem. Commun., 2004,
1026; (h) S. L. Jain, V. B. Sharma and B. Sain, Tetrahedron Lett., 2004,
45, 8731; (i) H. Wu, L.-W. Xu, C.-G. Xia, J. Ge, W. Zhou and L. Yang,
Scheme 5
The structural identity of benzothiazepines 7 and 8 was
confirmed by means of detailed one- and two-dimensional NMR
spectroscopic analysis. For example, the presence of cross-peaks
in the COSY-spectrum of 4-phenylbenzothiazepine 7a between
the NH and the C-4 benzylic proton supported the assigned
substitution pattern (Fig. 1). A NOE-effect of 3.8% between the
same two protons proved this assignment to be correct. Similarly,
cross-peaks between the NH proton and the adjacent methylene
protons supported the structure of benzothiazepine 8 bearing a
phenyl group at the 2-position. For both benzothiazepines 7 and
8, the relative configuration was assigned as trans based on the
large vicinal coupling constants of 9.6 Hz between H-3 and H-4 for
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 1902–1904 | 1903
©