D
C. Han et al.
Letter
Synlett
By using the optimized reaction conditions, we then ex-
plored the scope of the aryl azide in this transformation
(Table 2). A broad spectrum of substrates bearing various
substituents was investigated. All the reactions proceeded
smoothly and they consistently gave the target molecules
3a–q in good to excellent yield, regardless of whether the
substrates bore electron-donating or electron-withdrawing
substituents (Table 2, 3a–q). The reactions of aryl azides
with electron-donating groups such as methyl or methoxy
in the ortho-, meta-, or para-position all gave the corre-
sponding products in good yields (3a–f). Substrates with an
electron-withdrawing group such as as sulfonamide, nitro,
fluoro, chloro, or bromo also reacted smoothly, although
the yields were somehow lower (2g–q).
Aryl azides with substituents in the para-position pro-
duced higher yields than did those bearing groups in the
meta- or ortho-position, probably owning to the steric ef-
fects (Table 2, 3a versus 3c and 3d or 3e versus 3f). Note
that substrates possessing more-electron-rich groups gave
higher yields of the corresponding products. Furthermore, a
substrate bearing group a sulfonamido group was also suit-
able for this transformation, giving a good yield of the cor-
responding product 3g.
Zhao, F.; Zhou, H.; Xie, K.; Jiang, Y. J. Chem. Sci. (Berlin, Ger.)
2017, 129, 289. (e) Zhao, F.; Liu, Y.; Yang, S.; Xie, K.; Jiang, Y. Org.
Chem. Front. 2017, 4, 1112. (f) Liu, Y.; Zhang, W.; Xie, K.; Jiang, Y.
Synlett 2017, 28, 1496.
(5) Röhrig, U. F.; Majjigapu, S. R.; Grosdidier, A.; Bron, S.; Stroobant,
S.; Pilotte, L.; Colau, D.; Vogel, P.; Van den Eynde, B. J.; Zoete, V.;
Michielin, O. J. Med. Chem. 2012, 55, 5270.
(6) Totir, M. A.; Padayatti, P. S.; Helfand, M. S.; Carey, M. P.;
Bonomo, R. A.; Carey, P. R.; van den Akker, F. Biochemistry 2006,
45, 11895.
(7) Bian, J.; Zhang, L.; Han, Y.; Wang, C.; Zhang, L. Curr. Med. Chem.
2015, 22, 2065.
(8) El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Bioorg.
Med. Chem. Lett. 2007, 17, 6656.
(9) Huisgen, R. Proc. Chem. Soc., London 1961, 357.
(10) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2002, 41, 2596.
(11) (a) Zheng, X.; Wan, Y.; Ling, F.; Ma, C. Org. Lett. 2017, 19, 3859.
(b) Quan, X.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2014,
16, 5728. (c) Jiang, Y.; Kuang, C. Huaxue Jinzhan 2012, 24, 1983.
(12) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett.
2004, 6, 2853.
(13) Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C.-M.; Baldino, C.
M. Tetrahedron Lett. 2005, 46, 2911.
(14) (a) Wang, D.; Etienne, L.; Echeverria, M.; Moya, S.; Astruc, D.
Chem. Eur. J. 2014, 20, 4047. (b) Pathigoolla, A.; Pola, R. P.;
Sureshan, K. M. Appl. Catal., A 2013, 453, 151.
(15) Ramachary, D. B.; Shashank, A. B.; Karthik, S. S. Angew. Chem.
Int. Ed. 2014, 53, 10420.
(16) (a) Kwok, S. K.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.; Fokin,
V. V. Org. Lett. 2010, 12, 4217. (b) Cheng, X.-Z.; Liu, W.; Huang,
Z.-D.; Kuang, C.-X. Chin. Chem. Lett. 2013, 24, 764.
In summary, we successfully synthesized 1-monosub-
stituted 1,2,3-triazoles from propargyl alcohol and various
aryl azides as starting materials. The 1-monosubstituted
1,2,3-triazole derivatives were readily prepared in good to
excellent yields by a simple three-step one-pot sequence.
(17) (a) González-Calderón, D.; Santillán-Iniesta, I.; González-
González, C. A.; Fuentes-Benítes, A.; González-Romero, C. Tetra-
hedron Lett. 2015, 56, 514. (b) Luo, Z.; Zhao, Y.; Xu, F.; Ma, C.; Xu,
X.-M.; Zhang, X.-M. Chin. Chem. Lett. 2014, 25, 1346. (c) Chen,
Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem. Int. Ed. 2013,
52, 13324.
Funding Information
The authors would like to thank the National Natural Science Founda-
tion of China (No. 51464021) for financial support.
N
oaitn
a
l
N
a
utra
l
S
ecin
c
e
F
o
u
n
d
oaitn
of
C
h
n
i
a
5(
1
4
6
4
0
2
1)
(18) Zarei, A. Tetrahedron Lett. 2012, 53, 5176.
(19) Kumar, B. S. P. A.; Reddy, K. H. V.; Karnakar, K.; Satish, G.;
Nageswar, Y. V. D. Tetrahedron Lett. 2015, 56, 1968.
(20) Chen, Y.; Zhuo, Z.-J.; Cui, D.-M.; Zhang, C. J. Organomet. Chem.
2014, 749, 215.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
(21) Guo, S.; Lim, M. H.; Huynh, H. V. Organometallics 2013, 32, 7225.
(22) (a) de Oliviera, R. N.; Sinou, D.; Srivastava, R. M. J. Carbohydr.
Chem. 2006, 25, 407. (b) Wu, L.; Yan, B.; Yang, G.; Chen, Y.
Heterocycl. Commun. 2013, 19, 397. (c) Wu, L.-Y.; Xie, Y.-X.;
Chen, Z.-S.; Niu, Y.-N.; Liang, Y.-M. Synlett 2009, 1453.
(23) (a) Andersen, J.; Bolvig, S.; Liang, X. Synlett 2005, 2941. (b) Chan,
D. C. M.; Laughton, C. A.; Queener, S. F.; Stevens, M. F. G. Bioorg.
Med. Chem. 2002, 10, 3001. (c) Fletcher, J. T.; Walz, S. E.; Keeney,
M. E. Tetrahedron Lett. 2008, 49, 7030. (d) Jiang, Y.; Kuang, C.;
Yang, Q. Tetrahedron 2011, 67, 289. (e) Jiang, Y.; Kuang, C.; Yang,
Q. Synlett 2009, 3163.
(24) (a) Häbich, D.; Barth, W.; Rösner, M. Heterocycles 1989, 29,
2083. (b) Kadaba, P. K. J. Org. Chem. 1992, 57, 3075. (c) Sasaki,
T.; Eguchi, S.; Yamaguchi, M.; Esaki, T. J. Org. Chem. 1981, 46,
1800. (d) Huang, Z.; Wang, R.; Sheng, S.; Zhou, R.; Cai, M. React.
Funct. Polym. 2013, 73, 224.
References and Notes
(1) (a) Shaikh, M. H.; Subhedar, D. D.; Khan, F. A. K.; Sangshetti, J.
N.; Shingate, B. B. Chin. Chem. Lett. 2016, 27, 295.
(b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013,
113, 4905.
(2) (a) Kennedy, Z. C.; Barrett, C. A.; Warner, M. G. Langmuir 2017,
33, 2790. (b) Kantheti, S.; Narayan, R.; Raju, K. V. S. N. RSC Adv.
2015, 5, 3687. (c) Chu, C.; Liu, R. Chem. Soc. Rev. 2011, 40, 2177.
(3) (a) Dheer, D.; Singh, V.; Shankar, R. Bioorg. Chem. 2017, 71, 30.
(b) Johansson, J.; Beke-Somfai, T.; Stålsmeden, A.; Kann, N.
Chem. Rev. 2016, 116, 14726. (c) Sheng, C.; Zhang, W. Curr. Med.
Chem. 2011, 18, 733. (d) Jiang, Y.; Kuang, C. Mini-Rev. Med.
Chem. 2013, 13, 713.
(25) (a) Naud, J.; Lemke, C.; Goudreau, N.; Beaulieu, E.; White, P. D.;
Llinàs-Brunet, M.; Forgione, P. Bioorg. Med. Chem. Lett. 2008, 18,
3400. (b) Yang, Q.; Jiang, Y.; Kuang, C. Helv. Chim. Acta 2012, 95,
(4) (a) Chen, Z.; Liu, Z.; Cao, G.; Li, H.; Ren, H. Adv. Synth. Catal.
2017, 359, 202. (b) Lee, D.; Yoo, E. J. Org. Lett. 2015, 17, 1830.
(c) Shi, S.; Kuang, C. J. Org. Chem. 2014, 79, 6105. (d) Liu, Y.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E