Phenanthroline as a Building Block for Carbohydrate Receptors
FIGURE 1. Receptor 1 and structures of sugars 2-9.
different binding properties could be obtained. The aim of this
study was to evaluate the potential of the phenanthroline unit
in the recognition of neutral carbohydrates. The potential of
phenanthroline-based receptors in the recognition of saccharides
through noncovalent interactions has not been explored so far.
The phenanthroline unit has mostly been incorporated into
different boronic acid-based receptors,3,5 using covalent interac-
tions for sugar binding. It should be noted that hydrogen-bonding
phenanthroline-based receptors have been designed to bind diols.
Complexation properties of such receptors toward cyclohexane
diols have been described by Anslyn and co-workers.6
As a starting point, we have examined the binding properties
of an acyclic phenanthroline/aminopyridine-based receptor 1 (see
Figure 1). To evaluate the recognition capabilities of this
receptor several sugars were selected as substrates, such as octyl
ꢀ-D-glucopyranoside (2a), methyl ꢀ-D-glucopyranoside (2b),
octyl R-D-glucopyranoside (3a), methyl R-D-glucopyranoside
(3b), octyl ꢀ-D-galactopyranoside (4a), methyl ꢀ-D-galactopy-
ranoside (4b), methyl R-D-galactopyranoside (5), methyl R-D-
mannopyranoside (6), N-acetyl-D-glucosamine (7), N-acetyl-D-
galactosamine (8), and L-fucose (9). The binding properties of
1 were compared with those of the symmetrical aminopyridine-
based analogue 10 (1,3,5-tris[(4,6-dimethylpyridin-2-yl)ami-
nomethyl]-2,4,6-triethylbenzene4l).7 The interactions of the
receptor 1 and the corresponding saccharides were investigated
(2) For some examples of carbohydrate receptors operating through nonco-
valent interactions, see (further examples are cited in refs 4a-c): (a) Ferrand,
Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619-622, and references
cited therein. (b) Klein, E.; Crump, M. P.; Davis, A. P. Angew. Chem., Int. Ed.
2005, 44, 298–302. (c) Abe, H.; Aoyagi, Y.; Inouye, M. Org. Lett. 2005, 7,
59–61. (d) Welti, R.; Abel, Y.; Gramlich, V.; Diederich, F. HelV. Chim. Acta
2003, 86, 548–562. (e) Welti, R.; Diederich, F. HelV. Chim. Acta 2003, 86, 494–
503. (f) Wada, K.; Mizutani, T.; Kitagawa, S. J. Org. Chem. 2003, 68, 5123–
5131. (g) Segura, M.; Bricoli, B.; Casnati, A.; Mun˜oz, E. M.; Sansone, F.; Ungaro,
R.; Vicent, C. J. Org. Chem. 2003, 68, 6296–6303. (h) Ishi-I, T.; Mateos-
Timoneda, M. A.; Timmerman, P.; Crego-Calama, M.; Reinhoudt, D. N.; Shinkai,
S. Angew. Chem., Int. Ed. 2003, 42, 2300–2305. (i) Cho, H.-K.; Kim, H.-J.;
Lee, K. H.; Hong, J.-I. Bull. Korean Chem. Soc. 2004, 25, 1714–1716. (j) Tamaru,
S.-i.; Shinkai, S.; Khasanov, A. B.; Bell, T. W. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 4972–4976. (k) Ladomenou, K.; Bonar-Law, R. P. Chem. Commun.
2002, 2108–2109. (l) Bitta, J.; Kubik, S. Org. Lett. 2001, 3, 2637–2640. (m)
Kra´l, V.; Rusin, O.; Schmidtchen, F. P. Org. Lett. 2001, 3, 873–876. (n) Eblinger,
F.; Schneider, H.-J. Collect. Czech. Chem. Commun. 2000, 65, 667–672.
(3) Another strategy, which has been employed for the design of synthetic
carbohydrate receptors, involves exploitation of non-natural bonding interactions;
this strategy relies on the reversible formation of covalent bonds from diol units
and boronic acid. For reviews on boronic acid-based receptors, see: (a) James,
T. D.; Shinkai, S. Top. Curr. Chem. 2002, 218, 159–200. (b) Striegler, S. Curr.
Org. Chem. 2003, 7, 81–102. (c) James, T. D.; Sandanayake, K. R. A. S.; Shinkai,
S. Angew. Chem., Int. Ed. 1996, 35, 1910–1922.
(4) (a) Mazik, M.; Buthe, A. C. Org. Biomol. Chem. 2008, 6, 1558–1568.
(b) Mazik, M.; Kuschel, M. Chem. Eur. J. 2008, 14, 2405–2419. (c) Mazik, M.;
Kuschel, M. Eur. J. Org. Chem. 2008, 1517–1526. (d) Mazik, M.; Buthe, A. C.
J. Org. Chem. 2007, 72, 8319–8326. (e) Mazik, M.; Cavga, H. J. Org. Chem.
2007, 72, 831–838. (f) Mazik, M.; Ko¨nig, A. Eur. J. Org. Chem. 2007, 3271–
3276. (g) Mazik, M.; Cavga, H. Eur. J. Org. Chem. 2007, 3633–3638. (h) Mazik,
M.; Ko¨nig, A. J. Org. Chem. 2006, 71, 7854–7857. (i) Mazik, M.; Cavga, H. J.
Org. Chem. 2006, 71, 2957–2963. (j) Mazik, M.; Kuschel, M.; Sicking, W. Org.
Lett. 2006, 8, 855–858. (k) Mazik, M.; Cavga, H.; Jones, P. G. J. Am. Chem.
Soc. 2005, 127, 9045–9052. (l) Mazik, M.; Radunz, W.; Boese, R. J. Org. Chem.
2004, 69, 7448–7462. (m) Mazik, M.; Sicking, W. Tetrahedron Lett. 2004, 45,
3117–3121. (n) Mazik, M.; Radunz, W.; Sicking, W. Org. Lett. 2002, 4, 4579–
4582. (o) Mazik, M.; Sicking, W. Chem. Eur. J. 2001, 7, 664–670. (p) Mazik,
M.; Bandmann, H.; Sicking, W. Angew. Chem., Int. Ed. 2000, 39, 551–554.
(5) (a) For fluorescent sensing of uronic acids based on a cooperative action
of boronic acid and metal chelate, see: Takeuch, M.; Yamamoto, M.; Shinkai,
S. Chem. Commun. 1997, 1731–1732. For an example of metal-containing
phenanthroline-based chemosensor based on 1,3,5-triethylbenzene frame, see:
(b) Cabell, L. A.; Best, M. D.; Lavigne, J. J.; Schneider, S. E.; Perreault, D. M.;
Monahan, M.-K.; Anslyn, E. V. J. Chem. Soc., Perkin Trans. 2 2001, 315–323.
1
by H NMR titrations and extraction experiments. The studies
showed that the incorporation of a suitably positioned phenan-
throline unit into the receptor structure significantly affects the
binding properties of the new receptor.
Results and Discussion
The synthesis of compound 1 is outlined in Scheme 1. The
synthesis started from 1,3,5-tris(bromomethyl)-2,4,6-triethyl-
benzene (11),8 which was converted into compound 134b via a
reaction with 2 equiv of 2-amino-4,6-dimethylpyridine (12). The
treatment of 13 with aqueous ammonia gave the amino
derivative 14,4b which was converted into compound 1 through
a reaction with 1,10-phenanthroline-2-carbonyl chloride (19).9
The carbonyl chloride 19 was prepared via a reaction of 1,10-
phenanthroline-2-carboxylic acid (18) with thionyl chloride. The
synthesis of 18 started from phenanthroline (15), which was
oxidized with hydrogen peroxide to form 1,10-phenanthroline
(6) Bell, D. A.; Diaz, S. G.; Lynch, V. M.; Anslyn, E. V. Tetrahedron Lett.
1995, 36, 4155–4158.
(7) Our previous studies showed that receptors based on the 2,4,6-triethyl-
benzene frame display about 2-fold higher binding affinity toward neutral
monosaccharides than those based on the 2,4,6-trimethylbenzene unit, see ref
4l.
(8) Wallace, K. J.; Hanes, R.; Anslyn, E.; Morey, J.; Kilway, K. V.; Siegel,
J. J. Synthesis 2005, 2080–2083.
(9) (a) Corey, E. J.; Borror, A. L.; Foglia, T. J. Org. Chem. 1965, 30, 288–
289. (b) Su, W.-H.; Jie, S.; Zhang, W.; Song, Y.; Ma, H.; Chen, J.; Wedeking,
K.; Fro¨hlich, R. Organometallics 2006, 25, 666–677.
J. Org. Chem. Vol. 73, No. 19, 2008 7445