Scheme 1
.
Proposed Molecular Valve Approach
Scheme 2. Synthesis of Secondary Squaramides
bonding with the squaramide NHs would preclude anion
binding. We anticipated further that a combined solvent-
induced disruption2h of the intramolecular hydrogen bond
and anion-induced reorientation of the carbonyls3f,10 would
facilitate binding. We wish to describe in this paper the use
of carbonyl groups as molecular valves to regulate chloride
ion binding to squaramides. The opening and closing of the
carbonyl valves is controlled by solvent-polarity dependent
intramolecular hydrogen bonding.
The key distinguishing feature of our work is that we
exploit the rigid preorganized anion-binding cavity in squara-
mides and use intramolecular hydrogen bonding to open and
close the cavity. Our approach complements that of Santac-
roce et al.,3a who used intramolecular hydrogen bonding as
a tool for preorganizing the anion-binding cavity of isoph-
thalimides.
reaction of squaric acid chloride with the appropriate
substituted aniline.11 The crude squaramides were purified
by chromatography followed by repeated recrystallization.
NMR analysis showed that the H6 doublet was consistently
the most deshielded signal in the benzoyl squaramides 1-3.
This indicated a preference for the extended ZZ conformation
with the deshielding attributable to the proximity of H6 to
the cyclobutene dione carbonyl.8a In the case of the ortho-
substituted derivatives 1 and 2, the ZZ conformation is further
reinforced by intramolecular hydrogen bonding between the
carbonyl of the ortho benzoyl groups and the squaramide
N-Hs.12 This is suggested by the following: (a) the 2 ppm
downfield shift of the N-H signal for the ortho isomers (11.4
and 11.3 ppm, respectively, for 1 and 2 in CDCl3) relative
to the meta derivative 3 (9.2 ppm in CDCl3); (b) in the 13C
NMR spectra, the benzoyl carbonyl in the ortho derivative
1 is deshielded by ∼4 ppm compared to the meta isomer 3;
and (c) in IR spectra, in CHCl3, the benzoyl carbonyl signal
of 1 and 2 appears at lower frequencies (1641 cm-1 and 1644
cm-1 respectively) than that for the meta derivative 3 (1660
cm-1).
The interactions of the o-benzoylsquaramides 1 and 2 with
chloride ions13 were dependent on solvent polarity (Figure
1). In nonpolar solvents such as toluene, methylene chloride,
and chloroform, there was no observable interaction of the
squaramides with chloride ions despite addition of a large
excess. In contrast, in polar solvents such as acetonitrile,
addition of Cl- ion led to a downfield shift of the N-H peak
along with changes14 in the aromatic region of the NMR
spectrum, suggestive of a hydrogen-bonded supramolecular
complex. The alternative possibility of covalent attachment
of the chloride to the benzoyl carbony15 was considered
Benzoyl-substituted squaramides 1-3 were chosen as the
chloride ion receptors and were synthesized (Scheme 2) by
(3) (a) Santacroce, P. V.; Davis, J. T.; Light, M. E.; Gale, P. A.; Iglesias-
Sanchez, J. C.; Prados, P.; Quesada, R. J. Am. Chem. Soc. 2007, 129, 1886–
1887. (b) Okunola, O. A.; Seganish, J. L.; Salimian, K. J.; Zavalij, P. Y.;
Davis, J. T. Tetrahedron 2007, 63, 10743–10750. (c) Tajc, S. G.; Miller,
B. L. J. Am. Chem. Soc. 2006, 128, 2532–2533. (d) Schlesinger, P. H.;
Ferdani, R.; Liu, J.; Pajewska, J.; Pajewski, R.; Saito, M.; Shabany, H.;
Gokel, G. W J. Am. Chem. Soc. 2002, 124, 1848–1849. For examples of
Cl- driven switching, see: (e) Nielsen, K. A.; Sarova, G. H.; Martin-Gomis,
L.; Fernandez-Lazaro, F.; Stein, P. C.; Sanguinet, L.; Levillain, E.; Sessler,
J. L.; Guldi, D. M.; Sastre-Santos, A.; Jeppesen, J. O. J. Am. Chem. Soc.
2008, 130, 460–462. (f) Chmielewski, M. J.; Jurczak, J Chem.sEur. J.
2006, 12, 7652–7667.
(4) Dutzler, R.; Campbell, E. B.; MacKinnon, R. Science 2003, 300,
108–112.
(5) (a) Capitan-Vallvey, L. F.; Guerrero, E. A.; Merelo, C. B.; Ramos,
M. D. F. Anal. Bioanal. Chem. 2004, 380, 563–569. (b) Gardner, J. S.;
Peterson, Q. P.; Walker, J. O.; Jensen, B. D.; Adhikary, B.; Harrison, R. G.;
Lamb, J. D. J. Membr. Sci. 2006, 277, 165–176.
(6) (a) Bai, Y.; Zhang, B.-G.; Xu, J.; Duan, C.-Y.; Dang, D.-B.; Liu,
D.-J.; Meng, Q.-J New J. Chem. 2005, 29, 777–779. (b) dos Santos,
C. M. G.; McCabe, T.; Gunnlaugsson, T. Tetrahedron Lett. 2007, 48, 3135–
3139.
(11) Ehrhardt, H.; Huenig, S.; Puetter, H. Chem. Ber. 1977, 110, 2506–
2523.
(7) (a) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu,
Y.; Stoddart, J. F.; Zink, J. I Proc. Natl Acad. Sci. U.S.A. 2005, 102, 10029–
10034. (b) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart,
J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (c) Kocer, A.;
Walko, M.; Meijberg, W.; Feringa, B. L. Science 2005, 309, 755–758.
(8) (a) Muthyala, R. S.; Subramaniam, G.; Todaro, L. Org. Lett. 2004,
6, 4663–4665. (b) Fu, N.; Allen, A. D.; Kobayashi, S.; Tidwell, T. T.;
Vukovic, S.; Arumugam, S.; Popik, V. V.; Mishima, M. J. Org. Chem.
2007, 72, 1951–1956.
(12) For examples of intramolecular hydrogen bonding in squaramides,
see: (a) Davis, A. P.; Draper, S. M.; Dunne, G.; Ashton, P Chem.Commun.
1999, 226, 5–2266. (b) Prohens, R.; Rotger, M. C.; Pina, M. N.; Deya,
P. M.; Morey, J.; Ballester, P; Costa, A Tetrahedron Lett. 2001, 42, 4933–
4936. (c) Rotger, M. C.; Pina, M. N.; Frontera, A.; Martorell, G.; Ballester,
P.; Deya, P. M.; Costa, A. J. Org. Chem. 2004, 69, 2302–2308.
(13) The addition of Br- or I- to 1 (or 2) did not lead to any solvent-
-
polarity dependent NMR spectral shifts. For F-, CH3CO2-, and H2PO4
there were no spectral changes in CHCl3 but in CH3CN, a 77 nm
bathochromic shift in the UV-vis spectra was identical to that generated
by the addition of OH- indicating deprotonation of the squaramide (see
the Supporting Information).
(9) (a) Rotger, C.; Soberats, B.; Quinonero, D.; Frontera, A.; Ballester,
P.; Benet-Buchholz, J.; Deya, P. M.; Costa, A Eur. J. Org. Chem. 2008,
11, 1864–1868, and references therein. (b) Ambrosi, G.; Formica, M.; Fusi,
V.; Giorgi, L.; Guerri, A.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P
Chem.sEur. J. 2007, 13, 702–712. (c) Garau, C.; Quinonero, D.; Frontera,
A.; Costa, A.; Ballester, P.; Deya, P. M. Chem. Phys. Lett. 2003, 370, 7–
13.
(14) Similar spectral shifts were observed in solvent mixtures such as
9:1 (v/v) CD3CN/DMSO-d6 or CD3CN/CDCl3 (9:1) but not in neat DMSO-
d6 or pyridine-d5. Compounds 1 and 2 were insoluble in methanol-d4.
(15) The resulting tetrahedral intermediate would be stabilized by
intramolecular hydrogen bonding: Kim, Y. K.; Lee, Y.-H.; Lee, H.-Y.; Kim,
M. K.; Cha, G. S.; Ahn, K. H Org. Lett. 2003, 5, 4003–4006.
(10) Kim Sung, K.; Bok Ju, H.; Bartsch Richard, A.; Lee Jin, Y.; Kim
Jong, S. Org. Lett. 2005, 7, 4839–4842
.
3316
Org. Lett., Vol. 10, No. 15, 2008