C O M M U N I C A T I O N S
Chart 1. Enantioselective Ring Opening of Unsubstituted Aziridines
with Phase Transfer Catalyst 4f
Scheme 2. One-Pot Alkylation/Desulfonation/Cyclization Sequence
As N-nosyl substituted sulfonamides are readily cleaved with thiols in
the presence of K2CO3(s),15 a one-pot alkylation/deprotection sequence
appeared feasible via a modification of the established conditions.
Pleasingly, with K2CO3(s) as the base and a staged addition of thiophenol,
tricyclic indanone imine 7, a product of intramolecular condensation, was
formed in good yield and high diastereomeric excess (Scheme 2).
In conclusion, we have developed the first highly enantioselective
aziridine alkylation reaction under phase transfer catalysis. Using single
enantiomer aziridines, moderate to high catalyst controlled diastereose-
lectivities can be observed. Using a N-nosyl protected aziridine allowed a
one-pot alkylation/desulfonation/cyclization sequence to diastereomerically
pure tricycle 7. Work to exploit this methodology in total synthesis is
currently underway and will be reported in due course.
a For desulfonation of 3b, see Supporting Information. b Reaction performed
at 0 °C with 50% aq Cs2CO3 as the base. c Relative stereochemical configuration
assigned by analogy.11
Acknowledgment. We gratefully acknowledge the EPSRC and
Pfizer Global Research and Development (to T.A.M.). D.J.D. would
like to thank Aurelie Alba for preliminary studies in this project.
Chart 2. Diastereoselective Ring Opening of Chiral Aziridines
5a-d with Phase Transfer Catalyst 4f
Supporting Information Available: Experimental procedures and
spectral data for compounds 2a,b, 3a-g, 4f, 6a-i, and 7. This material is
References
(1) For recent reviews, see: (a) Pellissier, H. Tetrahedron 2007, 63, 9267. (b)
Santanu, M.; Yang, J.; Hoffmann, S.; List, B. Chem. ReV. 2007, 107, 5471.
(c) Almasi, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007,
18, 299. (d) Takemoto, Y.; Miyabe, H. Chimia 2007, 61, 269.
(2) For recent examples of secondary amine catalyzed Michael additions of
aldehydes to nitroolefins, see: (a) Chi, Y.; Guo, L.; Kopf, N. A.; Gellman,
S. H. J. Am. Chem. Soc. 2008, 130, 5608. (b) Wiesner, M.; Revell, J. D.;
Tonazzi, S.; Wennemers, H. J. Am. Chem. Soc. 2008, 130, 5610. (c) Garcia-
Garcia, P.; Lade´peˆche, A.; Halder, R.; List, B. Angew. Chem., Int. Ed. 2008,
47, 4719. (d) Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Angew.
Chem., Int. Ed. 2008, 4722.
(3) For early studies using ꢀ-haloamines as electrophiles in ꢀ-ketoester
alkylations, see: Barltrop, J. A. J. Chem. Soc. 1947, 399.
(4) For reviews on ring opening of aziridines, including asymmetric methods,
see: (a) Pineschi, M. Eur. J. Org. Chem. 2006, 4979. (b) Watson, I. D. G.;
Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194. (c) Hu, X. E.
Tetrahedron 2004, 60, 2701.
(5) For a base-catalyzed process, see: Moss, T. A.; Alba, A.; Hepworth, D.;
Dixon, D. J. Chem Commun. 2008, 21, 2474 and references cited therein.
(6) (a) Blyumin, E. V.; Gallon, H. J.; Yudin, A. K. Org. Lett. 2007, 9, 4677.
(7) For reviews on PTC, see: (a) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed.
2007, 46, 4222. (b) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37,
518. (c) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
(8) For selected examples of advances in asymmetric phase transfer catalysis,
see: (a) O’Donnell, M. J.; Bennet, W. D.; Wu, S. J. Am. Chem. Soc. 1989,
111, 2353. (b) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 5139. (c) Park, H.-G.; Jeong, B.-S.; Yoo, M.-S.; Lee, J.-H.; Park, M.-
K.; Lee, Y.-J.; Kim, M.-J.; Jew, S.-S. Angew. Chem., Int. Ed. 2002, 41,
3036. (d) Corey, E. J.; Bo, Y.; Busch-Petersen, J. J. Am. Chem. Soc. 1998,
120, 13000. (e) Bella, M.; Kobbelgaard, S.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 3670. (f) Lygo, B.; Allbutt, B.; Kirton, E. H. M. Tetrahedron
Lett. 2005, 46, 4461. (g) Ooi, T.; Fujioka, S.; Maruoka, K. J. Am. Chem.
Soc. 2004, 126, 11790.
(9) (a) O’Donnell, M. J.; Delgado, F.; Hostettler, C.; Schwesinger, R.
Tetrahedron Lett. 1998, 39, 8775. (b) Lee, Y.-J.; Lee, J.; Kim, M.-J.; Jeong,
B.-S.; Lee, J.-H.; Kim, T.-S.; Lee, J.; Ku, J.-M.; Jew, S.-S.; Park, H.-G.
Org. Lett. 2005, 7, 3207.
a The dr ) 2:1 when 4f was replaced with TBAB (10 mol %). b Relative and
absolute stereochemical configurations were determined by X-ray analysis.
aziridines bearing both small (5a, R4 ) H, R5 ) Me) and bulky (5b, R4
) H, R5 ) iPr; 5c, R4 ) iPr, R5 ) H) substituents, with 10 mol % of
phase transfer catalyst 4f in the presence of solid cesium carbonate12 (Chart
2).
(10) (a) Bernardi, L.; Lopez-Cantarero, J.; Neiss, B.; Jørgensen, K. A. J. Am.
Chem. Soc. 2007, 129, 5772. For early studies, see: (b) Corey, E. J.; Xu,
F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414. (c) Lygo, B.;
Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
Pleasingly, it was possible to obtain the matched enantiopure alkylation
products (6a and 6b) in high yields and high stereocontrol. In the mis-
matched case, catalyst control overrode the weak natural substrate control
and 6c was afforded in good diastereomeric excess (12:1 dr). Nosyl
substituted aziridine 5b was found to react slowly with non-indanone-
based pronucleophiles. However, reactivity was greatly enhanced when
the corresponding N-trifluoromethanesulfonyl protected aziridine13 (5d)
was employed with a range of pronucleophiles including indanones (6d),
cyclopentanones (6e), tetralones (6f) lactams (6g), and succinimides (6h,
6i), giving the products in high yields and in moderate to high diastereo-
meric ratios (9:2 to 30:1 dr).14
(11) Cui, H.-F.; Dong, K.-Y.; Zhang, G.-W.; Wang, L.; Ma, J.-A. Chem.
Commun. 2007, 22, 2284.
(12) For alkylations with chiral aziridines 5a-c, Cs2CO3 (s) or Cs2CO3 (aq) as
the base was found to be superior to the milder K2HPO4 (aq), whereas
with 5d Cs2CO3(s) was found to be optimal.
(13) For deprotection procedures, see: ProtectiVe Groups in Organic Synthesis;
Wuts, P. G. M., Greene, T. W., Eds.; Wiley: New York, 2007.
(14) Using 4f and Cs2CO3(s), good reactivity but poor diastereomeric ratios were
observed with a range of noncyclic phenyl cyanoacetate nucleophiles.
(15) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
JA8036965
9
J. AM. CHEM. SOC. VOL. 130, NO. 31, 2008 10077