Organic Letters
Letter
Rev. 2003, 103, 2763. (d) Tietze, L. F.; Kinzel, T.; Brazel, C. C. Acc.
Chem. Res. 2009, 42, 367.
(10) Mandai, T.; Nokami, J.; Yano, T.; Yoshinaga, Y.; Otera, J. J. Org.
Chem. 1984, 49, 172.
(11) Carreno, M. C.; Urbano, A.; Di Vitta, C. J. Org. Chem. 1998, 63,
(3) For selected reviews on transition-metal-catalyzed element−
element addition of 1,3-diene, see: (a) Baeckvall, J. E. Acc. Chem. Res.
1983, 16, 335. (b) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106,
2320. For selected advances, see: (c) Tsuji, Y.; Obora, Y. J. Am. Chem.
Soc. 1991, 113, 9368. (d) Ishikawa, M.; Okazaki, S.; Naka, A.; Tachibana,
A.; Kawauchi, S.; Yamabe, T. Organometallics 1995, 14, 114. (e) Obora,
Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. 1995, 117, 9814.
(f) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1997,
689. (g) Yu, C.-M.; Youn, J.; Yoon, S.-K.; Hong, Y.-T. Org. Lett. 2005, 7,
4507. (h) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131,
2496. (i) Zhao, B.; Peng, X.; Zhu, Y.; Ramirez, T. A.; Cornwall, R. G.;
Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890. (j) Jeffrey, C. S.; Anumandla,
8320.
(12) Sneen, R. A. Acc. Chem. Res. 1973, 6, 46.
(13) For selected reviews, see: (a) Shao, Z.; Zhang, H. Chem. Soc. Rev.
2009, 38, 2745. (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.
(c) Zhou, J. Chem.Asian J. 2010, 5, 422. (d) Rueping, M.; Koenigs, R.
M.; Atodiresei, I. Chem.Eur. J. 2010, 16, 9350. (e) Loh, C. C. J.;
Enders, D. Chem.Eur. J. 2012, 18, 10212. (f) Parra, A.; Reboredo, S.;
́
Martin Castro, A. M.; Aleman, J. Org. Biomol. Chem. 2012, 10, 5001.
(g) Lv, J.; Luo, S. Chem. Commun. 2013, 49, 847.
(14) The reaction of TBS-protected 1a only led to 40% conversion at
−78 °C for 1 h. No further iodination continued at this temperature with
longer reaction time. This result partially supports that the hydroxyl
group is crucial to initiate protonation at the 1-position of the diene.
(15) Zhang, Y. D.; Reynolds, N. T.; Manju, K.; Rovis, T. J. Am. Chem.
Soc. 2002, 124, 9720.
D.; Carson, C. R. Org. Lett. 2012, 14, 5764. (k) Lishchynskyi, A.; Muniz,
̃
K. Chem.Eur. J. 2012, 18, 2212. (l) Cornwall, R. G.; Zhao, B.; Shi, Y.
Org. Lett. 2013, 15, 796.
(4) For selected advances, see: (a) Sato, Y.; Takimoto, M.; Hayashi, K.;
Katsuhara, T.; Takagi, K.; Mori, M. J. Am. Chem. Soc. 1994, 116, 9771.
(b) Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc.
1997, 119, 4911. (c) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am.
Chem. Soc. 1998, 120, 4033. (d) Takimoto, M.; Hiraga, Y.; Sato, Y.;
Mori, M. Tetrahedron Lett. 1998, 39, 4543. (e) Kimura, M.; Matsuo, S.;
Shibata, K.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 3386. (f) Sato,
Y.; Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Ikeda,
S. Angew. Chem., Int. Ed. 2003, 42, 5120. (h) Hirashita, T.; Kambe, S.;
Tsuji, H.; Araki, S. Chem. Commun. 2006, 2595. (i) Cho, H. Y.; Yu, Z. Y.;
Morken, J. P. Org. Lett. 2011, 13, 5261. (j) Leung, J. C.; Geary, L. M.;
Chen, T. Y.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2012, 134,
15700. (k) Xing, D.; Yang, D. Org. Lett. 2013, 15, 4370. (l) Bao, H. L.;
Bayeh, L.; Tambar, U. K. Chem. Sci. 2014, 5, 4863.
(5) For selected examples, see: (a) Babler, J. H.; Buttner, W. J.
Tetrahedron Lett. 1976, 17, 239. (b) Heasley, G. E.; Smith, D. A.; Smith,
J. N. J. Org. Chem. 1980, 45, 5206. (c) Nguyen Van, T.; De Kimpe, N.
Tetrahedron 2000, 56, 7969.
(6) For selected reviews on trimethylsilyl iodide, see: (a) Groutas, W.
C.; Felker, D. Synthesis 1980, 11, 861. (b) Schmidt, A. H. Aldrichimica
Acta 1981, 14, 31. (c) Olah, G. A.; Narang, S. C. Tetrahedron 1982, 38,
2225. (d) Voronkov, M. G.; Dubinskaya, E. I. J. Organomet. Chem. 1991,
410, 13. (e) Jung, M. E.; Martinelli, M. J.; Olah, G. A.; Prakash, G. K. S.;
Hu, J. B. Reagents for Silicon-Mediated Organic Synthesis. In Handbook
of Reagents for Organic Synthesis: Reagents for Silicon-Mediated Organic
Synthesis; Fuchs, P. L., Ed.; John Wiley and Sons: New York, 2011; pp
325−336.
(7) For selected examples of hydroiodination, see: (a) Hara, S.; Dojo,
H.; Takinami, S.; Suzuki, A. Tetrahedron Lett. 1983, 24, 731. (b) Brown,
H. C.; Somayaji, V.; Narasimhan, S. J. Org. Chem. 1984, 49, 4822.
(c) Reddy, Ch. K.; Periasamy, M. Tetrahedron Lett. 1990, 31, 1919.
(d) Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett 1990, 675. (e) Kropp, P. J.;
Crawford, S. D. J. Org. Chem. 1994, 59, 3102. (f) Gao, Y.; Harada, K.;
Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1995, 60, 290. (g) Campos, P.
J.; García, B.; Rodríguez, M. A. Tetrahedron Lett. 2002, 43, 6111.
(h) Shimizu, M.; Toyoda, T.; Baba, T. Synlett 2005, 2516. (i) Bartoli, G.;
Cipolletti, R.; Di Antonio, G.; Giovannini, R.; Lanari, S.; Marcolini, M.;
Marcantoni, E. Org. Biomol. Chem. 2010, 8, 3509. (j) Kawaguchi, S-i.;
Ogawa, A. Org. Lett. 2010, 12, 1893. (k) Ez-Zoubir, M.; Brown, J. A.;
Ratovelomanana-Vidal, V.; Michelet, V. J. Organomet. Chem. 2011, 696,
433.
(16) For a review on Thorpe−Ingold effect, see: Jung, M. E.; Piizzi, G.
Chem. Rev. 2005, 105, 1735.
(17) For reviews on allylic strain, see: (a) Johnson, F. Chem. Rev. 1968,
68, 375. (b) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
(18) Yu and co-workers have shown that the real catalytic species of
+
InX3 is InX2 . For the related elegant studies, see: (a) Zhuo, L. G.;
Zhang, J. J.; Yu, Z. X. J. Org. Chem. 2012, 77, 8527. (b) Zhuo, L. G.; Shi,
Y. C.; Yu, Z. X. Asian J. Org. Chem. 2014, 3, 842. (c) Zhuo, L. G.; Zhang,
J. J.; Yu, Z. X. J. Org. Chem. 2014, 79, 3809.
(19) (a) Chan, K. P.; Loh, T. P. Org. Lett. 2005, 7, 4491. (b) Sabitha,
G.; Reddy, K. B.; Bhikshapathi, M.; Yadav, J. S. Tetrahedron Lett. 2006,
́
47, 2807. (c) Dobbs, A. P.; Pivnevi, L.; Penny, M. J.; Martinovic, S.; Iley,
J. N.; Stephensond, P. T. Chem. Commun. 2006, 29, 3134. (d) Liu, F.;
Loh, T. P. Org. Lett. 2007, 9, 2063. (e) Chan, K. P.; Ling, Y. H.; Loh, T. P.
Chem. Commun. 2007, 9, 939. (f) Hu, X. H.; Liu, F.; Loh, T. P. Org. Lett.
2009, 11, 1741. (g) Li, H.; Loh, T. P. Org. Lett. 2010, 12, 2679.
(h) Saikia, A. K.; Bondalapati, S.; Indukuri, K.; Gogoi, P. Chem. Lett.
2011, 40, 1176. (i) Li, B.; Lai, Y. C.; Zhao, Y. J.; Wong, Y. H.; Shen, Z. L.;
Loh, T. P. Angew. Chem., Int. Ed. 2012, 51, 10619. (j) Clarisse, D.;
Pelotier, B.; Piva, O.; Fache, F. Chem. Commun. 2012, 48, 157.
(20) InCl3 or InBr3 instead of InI3 also led to the formation of iodo-
THP 3f in 80% and 73% yield, respectively. Neither chloro- nor bromo-
THP was detected. These results imply that TMSI should be the iodide
source, which is responsible for the attack at the 4-position of THP.
(21) (a) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc.
2002, 124, 4960. (b) Jasti, R.; Rychnovsky, S. D. Org. Lett. 2006, 8, 2175.
(22) Rychnovsky observed that TMSBr- or TMSI-promoted Prins
cyclization of α-acetoxy ethers gave axial-substituted tetrahydropyran
predominantly. (a) Jasti, R.; Vitale, J.; Rychnovsky, S. D. J. Am. Chem.
Soc. 2004, 126, 9904. (b) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J.
Am. Chem. Soc. 2005, 127, 9939.
(8) The product, in which the CH2O2CAr group falls on the same side
as the methyl group, is assigned to have a Z configuration. For a latest
study on the synthesis of Z-alkenes, see: (a) Zhuo, L. G.; Yao, Z. K.; Yu,
Z. X. Org. Lett. 2013, 15, 4634. For a recent review of the synthesis of Z-
alkenes, see: (b) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem.
Rev. 2012, 113, 1313.
(9) For selected reviews on Prins cyclization, see: (a) Crane, E. A.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2010, 49, 8316. (b) Han, X.; Peh, G.
R.; Floreancig, P. E. Eur. J. Org. Chem. 2013, 7, 1193. (c) Greco, S. J.;
Fiorot, R. G.; Lacerda, V.; dos Santos, R. B. Aldrichimica Acta 2013, 46,
59.
1849
Org. Lett. 2015, 17, 1846−1849