Blue Light-Emitting Zinc Complexes
Among them, zinc complexes have received much attention
because of their many advantageous EL properties, such as
electron transporting ability, light emitting efficiency, high
thermal stability, ease of sublimation, and great diversity of
tunable electronic properties resulting from ligand
substitution.13l–n,14 Because the electronic structure of metal
chelate luminescent materials is determined by the coordina-
tion of a ligand, the coordination geometry as well as the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) contributions from
the ligand need to be examined. Indeed, the coordination
mode of the ligand relates to the photophysical properties
of the resulting metal complexes, and the bulkiness of the
ligand alters the bonding around the metal center; a bulky
ligand tends to form monomeric species while less bulky
ligands encourage the formation of dimeric or trimeric metal
complexes. Furthermore, modification of the chelating ligand
in Alq3 and Bq (q: hydroquinoline) with electron-donating
or electron-withdrawing groups proves to be an effective
method for the tuning of the optical properties of Alq38 and
Bq.9b However, until recently very few studies have been
performed on the systematic tuning of the luminescence of
zinc complexes. In an effort to investigate the efficacy of
the substituent effect and its possible use in color tuning in
zinc(II) complexes, a series of electron-rich and electron-
poor oxazolylphenol ligands was prepared, and the resulting
4-coordinated Zn(oxazolylphenolate)2 complexes were in-
vestigated for their electronic and photophysical properties.
Here, we report the full details of the syntheses and
characterizations of various electron-donating and electron-
withdrawing aryl-substituted Zn oxazolylphenolate com-
plexes (5). The photophysical and electrochemical properties
of these Zn complexes were estimated by means of UV and
photoluminescence (PL) spectroscopy, as well as cyclic
voltammetry (CV). The corresponding EL properties for 5a
and 5c were studied through device fabrication by applying
them respectively as hole-transporting and emitting materials
in multilayer devices, depending on the HOMO and LUMO
energy levels. In addition, theoretical calculations were
performed to account for the change in the electronic
structure as a result of the inductive and mesomeric effects
on aryl substituents (ArX), as shown in Chart 1.
(3) (a) Higuchi, A.; Ohnishi, K.; Nomura, S.; Inada, H.; Shirota, Y. J.
Mater. Chem. 1994, 4, 171. (b) Hosokawa, C.; Higashi, H.; Nakamura,
H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853. (c) Shirota, Y.;
Ogawa, H.; Ohnishi, K. Synth. Met. 1997, 91, 243. (d) Zhang, Z.;
Jiang, X.; Zhu, W.; Zhang, B.; Xu, S. J. Phys. D: Appl. Phys. 2001,
34, 3083. (e) Uchida, M.; Ono, Y.; Yokoi, H.; Nakano, T.; Furukawa,
K. J. Photopolym. Sci. Technol. 2001, 14, 305.
(4) (a) Cho, H. N.; Kim, J. K.; Kim, D. Y.; Kim, C. Y.; Song, N. W.;
Kim, D. Macromolecules 1999, 32, 1476. (b) Shimoda, H.; Kimura,
M.; Miyashita, S.; Friend, R. H.; Burroughes, J. H.; Towns, C. R.
SID99 DIGEST 1999, 372.
(5) Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.;
Bau, R.; Thompson, M. E. Inorg. Chem. 2002, 41, 3055.
(6) (a) Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau,
R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005,
44, 7992. (b) Liu, Q.-D.; Jia, W.-L.; Wang, S. Inorg. Chem. 2005,
44, 1332.
(7) Wu, P.-C.; Yu, J.-K.; Song, Y.-H.; Chi, Y.; Chou, P.-T.; Peng, S.-M.;
Lee, G.-H. Organometallics 2003, 22, 4938.
(8) (a) Montes, V. A.; Pohl, R.; Shinar, J.; Anzenbacher, P., Jr Chem.sEur.
J. 2006, 12, 4523. (b) Lim, J. T.; Jeong, C. H.; Lee, J. H.; Yeom,
G. Y.; Jeong, H. K.; Chai, S. Y.; Lee, I. M.; Lee, W. I. J. Organomet.
Chem. 2006, 691, 2701. (c) Shi, Y.-W.; Shi, M.-M.; Huang, J.-C.;
Chen, H.-Z.; Wang, M.; Liu, X.-D.; Ma, Y.-G.; Xu, H.; Yang, B.
Chem. Commun. 2006, 1941. (d) Meyers, A.; Weck, M. Chem. Mater.
2004, 16, 1183. (e) Cheng, J.-A.; Chen, C. H.; Liao, C. H. Chem.
Mater. 2004, 16, 2862. (f) Montes, V. A.; Li, G.; Pohl, R.; Shinar, J.;
Anzenbacher, P., Jr AdV. Mater. 2004, 16, 2001. (g) Pohl, R.; Montes,
V. A.; Shinar, J.; Anzenbacher, P., Jr J. Org. Chem. 2004, 69, 1723.
(h) Pohl, R.; Anzenbacher, P., Jr Org. Lett. 2003, 5, 2769. (i) Sapochak,
L. S.; Padmaperuma, A.; Washton, N.; Endrino, F.; Schmett, G. T.;
Marshall, J.; Fogarty, D.; Burrows, P. E.; Forrest, S. R. J. Am. Chem.
Soc. 2001, 123, 6300. (j) Chen, C. H.; Shi, J. M. Coord. Chem. ReV.
1998, 171, 161. (k) Matsumura, M.; Akai, T. Jpn. J. Appl. Phys., Part
1 1996, 35, 5357. (l) Hopkins, T. A.; Meerholz, K.; Shaheen, S.;
Anderson, M. L.; Schmidt, A.; Kippelen, B.; Padias, A. B.; Hall, H. K.,
Jr; Peyghambarian, N.; Armstrong, N. R. Chem. Mater. 1996, 8, 344.
(9) (a) Wang, J.; Oyler, K. D.; Bernhard, S. Inorg. Chem. 2007, 46, 5700.
(b) Qin, Y.; Kiburu, I.; Shah, S.; Ja¨kle, F. Org. Lett. 2006, 8, 5227.
(c) Garon, S.; Lau, E. K. C.; Chew, S.-L.; Lee, S. T.; Thompson,
M. E. Journal of the SID 2005, 13, 405. (d) Mishra, A.; Periasamy,
N.; Patankar, M. P.; Narasimhan, K. L. Dyes Pigm. 2005, 66, 89. (e)
Jaafari, A.; Ouzeau, V.; Ely, M.; Rodriguez, F.; Yassar, A.; Aaron,
J. J.; Benalloul, P.; Barthou, C. Synth. Met. 2004, 147, 175. (f) Wang,
G.; Liang, F.; Xie, Z.; Su, G.; Wang, L.; Jing, X.; Wang, F. Synth.
Met. 2002, 131, 1. (g) Leung, L. M.; Lo, W. Y.; So, S. K.; Lee, K. M.;
Choi, W. K. J. Am. Chem. Soc. 2000, 122, 5640. (h) Tao, X. T.;
Suzuki, H.; Wada, T.; Miyata, S.; Sasabe, H. J. Am. Chem. Soc. 1999,
121, 9447. (i) Curioni, A.; Boero, M.; Andreoni, W. Chem. Phys. Lett.
1998, 294, 263. (j) Kido, J.; Iizumi, Y. Chem. Lett. 1997, 963. (k)
Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest, S. R.;
Cronin, J. A.; Thompson, M. E. J. Appl. Phys. 1996, 79, 7991.
(10) (a) Wang, J. F.; Jabbour, G. E.; Mash, E. A.; Anderson, J.; Zhang,
Y. D.; Lee, P. A.; Armstrong, N. R.; Peyghambarian, N.; Kippelen,
B. AdV. Mater. 1999, 11, 1266. (b) Liu, X.; Xia, H.; Gao, W.; Ye, L.;
Mu, Y.; Su, Q.; Ren, Y. Eur. J. Inorg. Chem. 2006, 1216.
Results and Discussion
Synthesis of Zn[2-(5-aryl-2-hydroxyphenyl)oxazolate]2
(5a-f). The synthesis strategy for the generation of ox-
azolylphenolate ligands (4a-f) is described in Scheme 1.
(13) (a) Xu, X.; Liao, Y.; Yu, G.; You, H.; Di, C.; Su, Z.; Ma, D.; Wang,
Q.; Li, S.; Wang, S.; Ye, J.; Liu, Y. Chem. Mater. 2007, 19, 1740. (b)
Gorner, H.; Khanra, S.; Weyhermuller, T.; Chaudhuri, P. J. Phys.
Chem. A 2006, 110, 2587. (c) Zhang, J.; Gao, S.; Che, C.-M. Eur.
J. Inorg. Chem. 2004, 956. (d) Liu, Q.-D.; Wang, R.; Wang, S. Dalton
Trans. 2004, 2073. (e) Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D.
J. Am. Chem. Soc. 2003, 125, 14816. (f) Wang, P.; Hong, Z.; Xie, Z.;
Tong, S.; Wong, O.; Lee, C.-S.; Wong, N.; Hung, L.; Lee, S. Chem.
Commun. 2003, 1664. (g) Kim, T. S.; Okubo, T.; Mitani, T. Chem.
Mater. 2003, 15, 4949. (h) Sapochak, L. S.; Benincasa, F. E.; Schofield,
R. S.; Baker, J. L.; Riccio, K. K. C.; Fogarty, D.; Kohlmann, H.; Ferris,
K. F.; Burrows, P. E. J. Am. Chem. Soc. 2002, 124, 6119. (i) Pang, J.;
Marcotte, Eric J.-P.; Seward, C.; Stephan Brown, R.; Wang, S. Angew.
Chem., Int. Ed. 2001, 40, 4042. (j) Wang, S. Coord. Chem. ReV. 2001,
215, 79. (k) Hamada, Y.; Sano, T.; Fujii, H.; Nishio, Y.; Takahashi,
H.; Shibata, K. Jpn. J. Appl. Phys. 1996, 35, 1339. (l) Yang, W.;
Schmider, H.; Wu, Q.; Zhang, Y.-S.; Wang, S. Inorg. Chem. 2000,
39, 2397. (m) Hopkins, T. A.; Meerholz, K.; Shaheen, S.; Anderson,
M. L.; Schmidt, A.; Kippelen, B.; Padias, A. B.; Hall, H. K., Jr;
Peyghambarian, N.; Armstrong, N. R. Chem. Mater. 1996, 8, 344.
(n) Nakamura, N.; Wakabayashi, S.; Miyairi, K.; Fujii, T. Chem. Lett.
1994, 1741.
(11) (a) Tong, Y.-P.; Zheng, S.-L.; Chen, X.-M. Inorg. Chem. 2005, 44,
4270. (b) Hu, N.-X.; Esteghamation, M.; Xie, S.; Popovic, Z.; Hor,
A.-M.; Ong, B.; Wang, S. AdV. Mater. 1999, 11, 1460. (c) Hamada,
Y.; Sano, T.; Fujita, M.; Fujii, T.; Nishio, Y.; Shibata, K. Chem. Lett.
1993, 905.
(12) (a) Zhao, S.-B.; Wang, R.-Y.; Wang, S. Inorg. Chem. 2006, 45, 5830.
(b) McCormick, T.; Jia, W.-L.; Wang, S. Inorg. Chem. 2006, 45, 147.
(c) Jia, W. L.; McCormick, T.; Tao, Y.; Lu, J.-P.; Wang, S. Inorg.
Chem. 2005, 44, 5706. (d) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang,
L.; Ma, D.; Jing, X.; Wang, F. AdV. Mater. 2004, 16, 432. (e) Cuttell,
D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A.
J. Am. Chem. Soc. 2002, 124, 6. (f) Ma, Y.; Che, C.-M.; Chao, H.-Y.;
Zhou, X.; Chan, W.-H.; Shen, J. AdV. Mater. 1999, 11, 852.
(14) (a) Kijima, Y.; Asai, N.; Kishii, N.; Tamura, S.-I. IEEE J. Quantum
Electron. 1998, 4, 40. (b) Hamada, Y. IEEE Trans. Electron DeVices
1997, 44, 1208.
Inorganic Chemistry, Vol. 47, No. 13, 2008 5667