J. Pícha et al. / Tetrahedron Letters 49 (2008) 4366–4368
4367
R
R
H
O
H
O
O
OBn
b
OH
a
P
O
P
O
OBn
NH
O
OH
BnO
NH2
5a, R = H
5b, R = CH3
6a, R = H
6b
O
, R = CH3
R
H
O
R
O
P
H
O
OCH3
OCH3
O
c
d
P
O
OBn
NH
OH
O
BnO
NH2
7a, R = H
8a, R = H
8b
O
7b
, R = CH3
, R = CH3
4
R
H
R
H
O
O
P
O
NH2
NH2
O
e
P
O
f
OBn
NH
O
OH
BnO
NH2
9a, R = H
9b
10a, R = H
O
, R = CH3
10b
, R = CH3
O
O
R
R
H
O
H
O
H
N
H
N
O
P
O
P
O
OBn
h
O
OH
g
OBn
NH
OH
NH2
BnO
12a, R = H
12b
11a, R = H
O
, R = CH3
11b
, R = CH3
Scheme 2. Reagents, conditions, and yields: (a) benzyl glycolate or benzyl (S)-lactate, BOP, TEA, DMF, rt, overnight, R = H (88%), R = CH3 (86%); (b) 10% Pd/H2, methanol, rt,
overnight, R = H (70%), R = CH3 (69%); (c) methyl glycolate or methyl (S)-lactate, BOP, TEA, DMF, rt, overnight, R = H (85%), R = CH3 (82%); (d) 10% Pd/H2, methanol, rt,
overnight, R = H (78%), R = CH3 (73%); (e) glycolamide or (S)-lactamide, BOP, TEA, DMF, rt, overnight, R = H (74%), R = CH3 (70%); (f) 10% Pd/H2, methanol, rt, overnight, R = H
(77%), R = CH3 (64%); (g) HOCH2CONHCH(S-iPr)COOBn or HOCH(S–CH3)CONHCH(S-iPr)COOBn, BOP, TEA, DMF, rt, overnight, R = H (70%), R = CH3 (72%); (h) 10% Pd/H2,
methanol, rt, overnight, R = H (65%), R = CH3 (56%).
Compound 4 was esterified easily with the benzyl ester, methyl
of the Czech Republic (to J.J.) and by Research Project Z4 055 0506
of the Academy of Sciences of the Czech Republic.
ester or amide forms of glycolic or L-lactic acids using the activat-
ing agent BOP10 to give the mixed diesters 5a, 5b, 7a, 7b, 9a, and 9b
as outlined in Scheme 2. To obtain compounds 11a and 11b, pre-
cursor 4 was reacted with the previously prepared15 dipeptides
References and notes
1. Dive, V.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Beau, F.; Cuniasse, P.;
Yiotakis, A. Cell. Mol. Life Sci. 2004, 61, 2010.
composed of benzyl L-valine and glycolic or L-lactic acid. All the
mixed diester precursors were fully deprotected by hydrogenoly-
sis. After HPLC purifications, we obtained target compounds 6a,
6b, 8a, 8b, 10a, 10b, 12a, and 12b. All the intermediates and final
products gave correct spectra. As examples, the NMR spectra for
compounds 12a and 12b are given.16
The synthetic route presented for phosphonate pseudopeptides
is convenient, mainly for masking the amino and hydroxy groups
with a non-polar protecting group, which permits easy work-up
of the intermediates. Condensation of 4 with esters or amides of
glycolic and lactic acid proceeds without sensitivity to steric hin-
drance, and the final step of the synthesis enables the complete re-
moval of the protecting groups under mild conditions. At present,
we are investigating the application of the N-Fmoc-protected
derivatives of 6a and 6b as building blocks for solid-phase peptide
synthesis, providing a tool for the development of phosphonic
peptide libraries.
2. Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Curr. Org. Chem.
2004, 8, 1135–1158.
3. Kafarski, P.; Lejczak, B. In Aminophosphinic and Aminophosphonic Acids.
Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; Synthesis
of Phosphono- and Phosphinopeptides; John Wiley & Sons Ltd: Chichester,
2000; pp 173–203.
4. Kafarski, P.; Lejczak, B. In Aminophosphinic and Aminophosphonic Acids,
Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; The
Biological Activity of Phosphono- and Phosphinopeptides; John Wiley & Sons
Ltd: Chichester, 2000; pp 407–442.
5. Isomura, S.; Ashley, J. A.; Wirsching, P.; Janda, K. D. Bioorg. Med. Chem. Lett.
2002, 12, 861.
6. Collinsova, M.; Jiracek, J. Curr. Med. Chem. 2000, 7, 629.
7. Hanson, J. E.; Kaplan, A. P.; Bartlett, P. A. Biochemistry 1989, 28, 6294.
8. Phillips, M. A.; Kaplan, A. P.; Rutter, W. J.; Bartlett, P. A. Biochemistry 1992, 31,
959.
9. Mitra, S.; Dygas-Holz, A. M.; Jiracek, J.; Zertova, M.; Zakova, L.; Holz, R. C. Anal.
Biochem. 2006, 357, 43.
10. Campagne, J. M.; Coste, J.; Jouin, P. Tetrahedron Lett. 1995, 36, 2079.
11. Kudzin, Z. H.; Stec, W. J. Synthesis 1978, 469.
12. Davies, J. S.; Howe, J.; Lebreton, M. J. Chem. Soc., Perkin Trans. 2 1995, 2335.
13. Hoffmann, M. J. Prakt. Chem. 1988, 330, 820.
14. Hoffmann, M. Phosphorus Sulfur Silicon Relat. Elem. 1998, 134, 109.
15. Toth, I.; Anderson, G. J.; Hussain, R.; Wood, I. P.; Fernandez, E. D.; Ward, P.;
Gibbons, W. A. Tetrahedron 1992, 48, 923.
Acknowledgments
16. Compound 12a: mixture of diastereoisomers ꢀ2:1; only signals of the
major isomer are given: 1H NMR (600 MHz, DMSO): 0.86 (3H, t, J = 7.3, CH3);
0.89 (6H, d, J = 6.8, 2 ꢁ CH3); 1.26 (2H, m, CH2); 1.40 (2H, m, CH2); 1.57 and
1.76 (2H, m, CH2); 2.08 (1H, m, CH); 2.96 (1H, m, N–CH–P); 4.18 (1H, dd, J = 8.2
This project was supported by Grant 203/06/1405 (to J.J.) of the
Grant Agency of the Czech Republic, by Chemical Genetics Consor-
tium No. LC060777 of the Ministry of Education, Youth and Sports