ORGANIC
LETTERS
2008
Vol. 10, No. 18
4017-4020
Cyclization via Carbolithiation of
r-Amino Alkyllithium Reagents
Robert J. Bahde and Scott D. Rychnovsky*
Department of Chemistry, 1102 Natural Sciences II, UniVersity of California, IrVine,
California 92697-2025
srychnoV@uci.edu
Received July 5, 2008
ABSTRACT
We report a new route to tertiary r-amino stereocenters by sequential alkylation of r-amino nitriles followed by reductive lithiation of the
nitrile and cyclization onto an alkene. Reductive lithiation of r-amino nitriles using lithium 4,4′-di-tert-butylbiphenylide (LiDBB) and subsequent
intramolecular carbolithiation proceeded with modest to high diastereoselectivity to deliver cyclic or spirocyclic ring systems. The stereoselectivity
of these intramolecular carbolithiations was examined using density function calculations to evaluate plausible transition state models.
Tertiary R-amino stereogenic centers are found in many classes
of alkaloids, including the cylindricines,1 fasicularin,2 and
pinnaic acid,3 and these stereogenic centers are often incorpo-
rated into rings. Previously, we reported the reductive lithiation
and cyclization of cyanohydrins to form spirocyclic ethers, often
with high stereoselectivity.4 A similar strategy might allow
complex alkaloid skeletons to be rapidly assembled from
R-amino nitriles. Nitriles may be deprotonated in the alpha
position, and these anions are excellent nucleophiles for
alkylation.5 Thus, the R-amino nitrile substrates might be
assembled using the facile alkylation adjacent to the nitrile, and
subsequent reductive lithiation would trigger an intramolecular
carbolithiation reaction. Herein, we describe several model
studies that delineate the scope of this reductive cyclization
strategy.
effectively in the synthesis of alkaloids.6 Both Husson7 and
Grierson8 have reported isolated examples of R-amino nitrile
reduction and intramolecular alkylation, but they have not
reported cyclization onto alkenes. Intramolecular cyclization of
alkyllithium reagents onto unactivated alkenes has been exten-
sively studied by Bailey9 and by a number of other groups.10
Wiberg and Bailey used computational methods to predict a
four-centered transition state for insertion of an alkene into the
organolithium bond.11 The classic intramolecular carbolithiation
of an R-amino alkyllithium reagent was reported by Coldham
using an optically pure secondary R-amino stannane to generate
the alkyllithium intermediate.12 Transmetalation of stannanes
is not an effective method for the preparation of tertiary alkyl-
lithium reagents, however, and neither is the deprotonation
(5) For a recent review, see: Fleming, F. F.; Zhang, Z. Tetrahedron 2005,
61, 747–789.
Husson has studied the stereoselective reductive decyanation
of R-amino nitriles extensively and applied this method very
(6) (a) Husson, H.-P.; Royer, J. Chem. Soc. ReV. 1999, 28, 383–394.
(b) Bonin, M.; Romero, J. R.; Grierson, D. S.; Husson, H.-P. Tetrahedron
Lett. 1982, 23, 3369–3372.
(1) (a) Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. W.;
White, A. H. Tetrahedron 1993, 49, 8645–8656. (b) Li, C.; Blackman, A. J.
Aust. J. Chem. 1994, 47, 1355–1361. (c) Li, C.; Blackman, A. J. Aust.
J. Chem. 1995, 48, 955–965. Review of synthetic work. (d) Liu, J.; Hsung,
R. P. Chemtracts 2005, 18, 321–330.
(7) (a) Ribeiro, C. M. R.; Sebastiao, J. M.; Bonin, M.; Quirion, J.;
Husson, H.-P. Tetrahedron Lett. 1994, 35, 7227–7230. (b) Roulland, E.;
Cecchin, F.; Husson, H. P. J. Org. Chem. 2005, 70, 4474–4477.
(8) (a) Zeller, E.; Grierson, D. S. Heterocycles 1988, 27, 1575–1578.
(b) Zeller, E.; Sajus, H.; Grierson, D. S. Synlett 1991, 44–46. (c) Zeller, E.;
Grierson, D. S. Synlett 1991, 878–880.
(2) (a) Patil, A. D.; Freyer, A. J.; Reichwein, R.; Carte, B.; Killmer,
L. B.; Faucette, L.; Johnson, R. K. Tetrahedron Lett. 1997, 38, 363–364.
Review of synthetic work: (b) Weinreb, S. M. Chem. ReV. 2006, 106, 2531–
2549. (c) Schar, P.; Cren, S.; Renaud, P. Chimia 2006, 60, 131–141.
(3) (a) Chou, T.; Kuramoto, M.; Otani, Y.; Shikano, M.; Yazawa, K.;
Uemura, D. Tetrahedron Lett. 1996, 37, 3871–3874. (b) Arimoto, H.;
Hayakawa, I.; Kuramoto, M.; Uemura, D. Tetrahedron Lett. 1998, 39, 861–
862.
(9) (a) Mealy, M. J.; Bailey, W. F. J. Organomet. Chem. 2002, 646,
59–67. (b) Bailey, W. F.; Jiang, X. Tetrahedron 2005, 61, 3183–3194.
(10) For leading references, see: (a) Chamberlin, A. R.; Bloom, S. H.;
Cervini, L. A.; Fotsch, C. H. J. Am. Chem. Soc. 1988, 110, 4788–4796. (b)
Broka, C. A.; Lee, W. J.; Shen, T. J. Org. Chem. 1988, 53, 1336–1338. (c)
Mudryk, B.; Cohen, T. J. Am. Chem. Soc. 1993, 115, 3855–3865. (d) Deng,
K.; Bensari, A.; Cohen, T. J. Am. Chem. Soc. 2002, 124, 12106–12107. (e)
Bailey, W. F.; Jiang, X. L. Tetrahedron 2005, 61, 3183–3194.
(4) Rychnovsky, S. D.; Takaoka, L. R. Angew. Chem., Int. Ed. 2003,
42, 818–820.
10.1021/ol801523r CCC: $40.75
Published on Web 08/14/2008
2008 American Chemical Society