Klapo¨tke et al.
X-ray Crystallography. For Se(CN)2,9 an Oxford Xcalibur3
diffractometer with a CCD area detector was employed for data
collection using Mo KR radiation (λ ) 0.71073 Å). The structure
was solved using direct methods (SIR9710) and refined by full-
matrix least-squares on F2 (SHELXL11). All non-hydrogen atoms
were refined anisotropically. ORTEP plots are shown with thermal
ellipsoids at the 50% probability level.
Scheme 1. Reaction of SeF4 with Me3SiCN
Table 1. Comparison of Observed and Calculated Raman Frequencies
[cm-1] for Se(CN)2 (2); Raman Intensities in Parentheses are Relative
Intensities for the Experimental Intensities and are Given in Units of Å4
amu-1 for the Calculated Intensities; ip ) in phase, oop ) out of phase
Caution! The proposed selenium tetracyanide is expected to be
potentially hazardous. For safety precautions please see ref 1a.
Attempted Preparation of Se(CN)4. A solution of SeF4 (274
mg, 1.77 mmol) in CH2Cl2 (1 mL) was treated with Me3SiCN (710
mg, 7.16 mmol) at -50 °C. Upon dropwise addition of Me3SiCN,
a fizzling noise was noticeable. After 15 min stirring, a sample for
NMR spectroscopy was prepared and the spectrum was recorded
at -30 °C. In the 77Se NMR spectrum, no evidence was found for
1, only the resonance for one of the decomposition products
Se(CN)2 (2) was found. 2: 13C NMR (CH2Cl2, -30 °C) δ 92.8.
77Se NMR (CH2Cl2, -30 °C) δ 292. Raman: ν ) 2327 (86), 2310
mode description
calculated
observed
CNstretch, ip
CNstretch, oop
CSeCstretch, oop
CSeCstretch, ip
CSeCbend/scissors
CSeCwag
CSeCtwist
SeCNwag
SeCNtwist
2283 (125)
2270 (59)
540 (6)
522 (2)
441 (3)
2327 (86)
2310 (24)
550 (12)
534 (5)
443 (7)
359 (2)
344 (2)
327 (0.4)
288 (0.2)
105 (8)
112 (24)
reductive decomposition to selenium(II) dicyanide (2) and
cyanogen occurred, which could both be subsequently
identified (Scheme 1).
(24), 550 (12), 534 (5), 443 (7), 359 (2), 112 (24) cm-1
.
Computational Details. The calculations were carried out using
the program package G03W12 at the MP2 level of theory13 using
a cc-pVTZ14 for carbon and nitrogen and a MWB-28-ECP for
selenium15 with a (14s10p2d1f)/[3s3p2d1f] basis set.16
On the basis of 77Se NMR spectra, which were recorded
after the reaction mixture was stirred for 15 min at -50 °C,
no evidence for the formation of 1 was obtained. Instead, a
single resonance at δ ) 292 (CH2Cl2) was observed, which
was assigned to Se(CN)2 (2). The previously reported
chemical shift of δ ) 0.29 is definitely incorrect, as well as
the reported chemical shift for Se2(CN)2 (δ ) 0.45); both
values must be multiplied by the factor 1000, because these
values are reported in parts per thousand, and not in parts
per million, as stated.17
Results and Discussion
The reaction of SeF4 with 4 equiv of Me3SiCN in
dichloromethane as solvent at low temperatures did not yield
the desired product, selenium(IV) tetracyanide (1). Instead,
In the 19F NMR spectrum of the reaction mixture,
resonances corresponding to traces of SeF4 and SeOF2
(impurity in the sample of SeF4 used for synthesis), in
addition to the major resonance corresponding to Me3SiF,
could be detected. After removal of all volatile materials,
the formation of Se(CN)2 was also established by Raman
spectroscopy of the pale-yellow residue (Table 1). The
second decomposition product, cyanogen (CN)2, was identi-
fied by 13C NMR spectroscopy (δ ) 96.3 in CH2Cl2) by
comparison with an authentic sample (δ ) 95.2 in C6D6). A
broad resonance at δ ) -115 (CH2Cl2) is found in the 14N
NMR spectrum, which is assigned to cyanogen (authentic
sample of cyanogen: δ ) -111 in C6D6; Me3SiCN: δ )
-88 in CDCl3). The reported converted value of δ ) -8017
assigned for Se(CN)2 could not be confirmed.
The calculated structure (MP2/cc-pVTZ, Table 2) of 1
adopts a pseudo trigonal-bipyramidal arrangement with the
free valence electron pair occupying one equatorial position
and is shown in Figure 1.
The reductive decomposition of 1 (Scheme 1) yields an
energy difference for 2 and one molecule of cyanogen of
∆E ) -300.4 kJ mol-1. The calculation supports our
experimental findings for the instability of 1. Compared to
the value for the analogous tellurium compound (∆E )
-161.1 kJ mol-1), which was shown to be feasible at low
temperatures,2 the reductive decomposition is considerably
more favored in the case of 1.
(9) Crystallographic data for 2: C2N2Se, Mw ) 130.99, orthorhombic, space
group Pbca, a ) 8.632(5) Å, b ) 6.847(5) Å, c ) 12.8151(7) Å, V
) 757.4(7) Å3, Z ) 8, Fcalcd ) 2.297 g cm-3, µ ) 9.688 mm-1, θ
range 4.0-26.0°, T ) 200 K, reflns collected 2804 (Rint ) 0.0459),
Final R1 (2σ data) ) 0.0334, wR2 (all data) ) 0.0949.
(10) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni,
A. G. G.; Burla, M. C.; Polidori, G.; Camalli, M.; Spagna, R. SIR97;
1997.
(11) Sheldrick, G. M. SHELX-97; University of Go¨ttingen: Go¨ttingen,
Germany, 1997.
(12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,
V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Kakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene,
M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,
A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Ciu, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. , Gaussian 2003
(ReVisison A.1); Gaussian Inc.: Pittsburgh, PA, 2003.
(13) (a) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618. (b) Head-
Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153,
503. (c) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys.
Lett. 1990, 166, 275. (e) Frisch, M. J.; Head-Gordon, M.; Pople, J. A.
Chem. Phys. Lett. 1990, 166, 281.
(14) (a) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.
(b) Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys.
1994, 100, 7410. (c) Kendall, R. A.; Dunning, T. H., Jr.; Harrison,
R. J. J. Chem. Phys. 1992, 96, 6796. (d) Dunning, T. H., Jr. J. Chem.
Phys. 1989, 90, 1007.
(15) Bergner, A.; Dolg, M.; Ku¨chle, W.; Stoll, H.; Preuss, H. Mol. Phys.
1993, 80, 1431.
(16) Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.
(17) Burchell, C. J.; Kilian, P.; Slawin, A. M. Z.; Woollins, J. D.; Tersago,
K.; Van Alsenoy, C.; Blockhuys, F. Inorg. Chem. 2006, 45, 710.
7026 Inorganic Chemistry, Vol. 47, No. 15, 2008