Amide· · · Amide Hydrogen-Bonded Dimer
Scheme 1. Equatorially “Blocked” (a) acac Complex and (b)
“paddle-wheel” Complex with Axial Sites (Arrows) Available for
Coordination by Two Additional Ligands
in crystal engineering is presented by the lack of reliable
and versatile synthetic methods for preparing coordination
networks with specific topologies and dimensionalities.
The assembly and spatial organization of a series of
coordination complexes could, in principle, be accomplished
using a bifunctional ligand, where one end of the ligand binds
to a metal ion, whereas the second moiety is capable of
forming a structure-directing interaction with a neighboring
ligand through a well-defined and preconceived supramo-
lecular synthon.6 Ideally, the metal-ligand and ligand-ligand
interactions should be insensitive to the relative positioning
of the two binding sites on the ligand, and the shape/size of
the coordination complex should not affect the desired
molecular-recognition events. The nature of the resulting
extended network (e.g., dimensionality, topology, and met-
rics) could then be varied/controlled in a systematic manner
through simple covalent modifications of the ligand.
The goal of this study is to establish the robustness of a
supramolecular synthetic strategy based upon a ligand compris-
ing an N-heterocycle (for binding to the metal ion) and an amide
(for providing intermolecular amide · · ·amide synthons).
To determine the ability of such ligands to achieve the
desired metal-containing extended structural motif in the
absence of potentially disruptive counterions, we decided to
target a set of neutral coordination complexes, Scheme 1.
In addition, by using chelating ligands we also restrict the
number of possible geometries that each metal ion can adopt,
thereby simplifying the assembly process further.
Scheme 2. Representation of the Targeted Supramolecular 1-D Chain
Constructed via Both Metal Coordination (Shown As a Circle), and
Amide· · ·Amide Hydrogen-Bonding
The supramolecular target in each case presented in this
study is first of all an infinite one-dimensional (1-D) chain,
Scheme 2. Therefore, each metal complex is required to have
exactly two available binding sites that can be occupied by
N-heterocycle/amide ligands.
Bidentate acetylacetonate (acac) and acetate “paddle-
wheel” complexes are particularly useful in this context as
they both produce neutral complexes (with M2+ metal ions)
that present two open binding sites oriented in a trans-
geometry, Scheme 1.7
(3) (a) Gao, D.-Z.; Liao, D.-L.; Jiang, Z.-H.; Yan, S.-P. Transition Met.
Chem. 2008, 33, 107. (b) Wang, X.-Y.; Wang, Z.-M.; Gao, S. Chem.
Commun. 2008, 281. (c) Ju, Z.-F.; Yao, Q.-X.; Wu, W.; Zhang, J.
Dalton Trans. 2008, 355. (d) Selvan, R. K.; Krishnan, V.; Augustin,
C. O.; Bertagnolli, H.; Kim, C. S.; Gedanken, A. Chem. Mater. 2008,
20, 429. (e) Pardo, E.; Carrasco, R.; Ruiz-Garcia, R.; Julve, M.; Lloret,
F.; Munoz, M. C.; Journaux, Y.; Ruiz, E.; Cano, J. J. Am. Chem. Soc.
2008, 130, 576. (f) Tuncel, M.; Oezbuelbuel, A.; Serin, S. React. Funct.
Polym. 2008, 68, 292. (g) Parent, A. R.; Vedachalam, S.; Landee,
C. P.; Turnbull, M. M. J. Coord. Chem. 2008, 61, 93. (h) Roques, N.;
Maspoch, D.; Luis, F.; Camon, A.; Wurst, K.; Datcu, A.; Rovira, C.;
Ruiz-Molina, D.; Veciana, J. J. Mater. Chem. 2007, 18, 98. (i) Costes,
J.-P.; Gheorghe, R.; Andruh, M.; Shova, S.; Clemente Juan, J.-M. New
J. Chem. 2006, 30, 572. (j) Atakol, O.; Boca, R.; Ercan, I.; Ercan, F.;
Fuess, H.; Haase, W.; Herchel, R. Chem. Phys. Lett. 2006, 423, 192.
(4) (a) Greatti, A.; Scarpellini, M.; Peralta, R. A.; Casellato, A.; Bortoluzzi,
A. J.; Xavier, F. R.; Jovito, R.; Aires de Brito, M.; Szpoganicz, B.;
Tomkowicz, Z.; Rams, M.; Haase, W.; Neves, A. Inorg. Chem. 2008,
47, 1107. (b) Jenkins, W. T.; Patrick, J. S. J. Inorg. Biochem. 1986,
27, 163. (c) Zalatan, J. G.; Catrina, I.; Mitchell, R.; Grzyska, P. K.;
O′Brien, P. J.; Herschlag, D.; Hengge, A.; Alvan, C. J. Am. Chem.
Soc. 2007, 129, 9789. (d) Gantt, S. L.; Gattis, G.; Fierke, C. A.
Biochem. 2006, 45, 6170. (e) Hou, Y.-M.; Gu, S.-Q.; Zhou, H.;
Ingerman, L. Biochem. 2005, 44, 12849.
(5) (a) Du, M.; Jiang, X.-J.; Zhao, X.-J. Inorg. Chem. 2007, 46, 3984. (b)
Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc.
Chem. Res. 1998, 31, 474. (c) Kawano, M.; Kawamichi, T.; Haneda,
T.; Kojima, T.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 15418. (d)
Takaoka, K.; Kawano, M.; Hozumi, T.; Ohkoshi, S.-I.; Fujita, M.
Inorg. Chem. 2006, 45, 3976. (e) Fujita, M.; Yazaki, J.; Ogura, K.
J. Am. Chem. Soc. 1990, 112, 5645. (f) Fujita, M.; Oguro, D.;
Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. Nature (London)
1995, 378, 469. (g) Hawxwell, S. M.; Espallargas, G. M.; Bradshaw,
D.; Rosseinsky, M. J.; Timothy, J.; Florence, A. J.; van de Streek, J.;
Brammer, L. Chem. Commun. 2007, 1532. (h) Li, H.; Eddaoudi, M.;
Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8571. (i)
Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Coˆte´, A. P.; Kim, J.;
Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 7110.
Isonicotinamide8 and benzimidazol-1-yl benzamides9 have
previously been used successfully to create infinite 1-D
chains with Ag(I), and the former has also been employed
extensively with more complex ions.10 However, there have
been no systematic studies of the relative effectiveness of a
series of N-heterocycle/amide ligands to connect neutral
coordination complexes into infinite 1-D chains. We now
present the structural outcome of reactions between six
different N-heterocycle/amide ligands, Scheme 3, and a series
of acac and paddle-wheel based complexes. This will allow
us to establish whether or not the assembly process is
sensitive to how the N-heterocycle/amide ligand is con-
(7) (a) Pansanel, J.; Jouaiti, A.; Ferlay, S.; Hosseini, M. W.; Planeix,
J.-M.; Kyritsakas, N. New. J. Chem. 2006, 30, 683. (b) Dikarev, E. V.;
Gray, T. G.; Li, B. Angew. Chem., Int. Ed. 2005, 44, 1721. (c) Cotton,
F. A.; Jin, J.-Y.; Li, Z.; Liu, C. Y.; Murillo, C. A. Dalton Trans. 2007,
2328. (d) Pan, L.; Olson, D. H.; Ciemnolonski, L. R.; Heddy, R.; Li,
J. Angew. Chem., Int. Ed. 2006, 45, 616. (e) Barrios, L. A.; Ribas, J.;
Aromi, G.; Ribas-Arino, J.; Gamez, P.; Roubeau, O.; Teat, S. J. Inorg.
Chem. 2007, 46, 7154. (f) Soldatov, D. V.; Ripmeester, J. A.
Chem.sEur. J. 2001, 7, 2979. (g) Hearns, N. G. R.; Hesp, K. D.;
Jennings, M.; Jasmine, J. L.; Preuss, K. E. Polyhedron 2007, 26, 2047.
(8) (a) Aakero¨y, C. B.; Beatty, A. Cryst. Eng. 1998, 1, 39. (b) Aakero¨y,
C. B.; Beatty, A. Chem. Commun. 1998, 1067.
(6) (a) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. (b)
Desiraju, G. Crystal Engineering-The Design of Organic Solids;
Elsevier: Amsterdam, 1989.
(9) Aakero¨y, C. B.; Desper, J.; Smith, M. M.; Urbina, J. F. Dalton Trans.
2005, 2462.
Inorganic Chemistry, Vol. 48, No. 9, 2009 4053