5492 Chem. Mater. 2010, 22, 5492–5499
DOI:10.1021/cm101316h
In situ Formation of Thermally Stable, Room-Temperature Ionic Liquids
from CS2 and Amidine/Amine Mixtures.
Tao Yu, Taisuke Yamada,† and Richard G. Weiss*
Department of Chemistry, Georgetown University, Washington, D.C. 20057-1227. †Present address:
Asahi Kasei E-materials, 2-1 Samejima, Fuji, Shizuoka, Japan
Received May 10, 2010. Revised Manuscript Received July 6, 2010
Amidinium dithiocarbamates salts with diverse structures are prepared in situ by adding one
equivalent of CS2 to an equimolar mixture of two nonionic molecules, an amidine and an amine.
Many of the salts made in this way are room temperature ionic liquids (RTILs) and the others (ILs)
melt well below the decomposition temperature of the salts, ca. 80 °C. Unlike the analogous
amidinium carbamate RTILs, which are made by adding CO2 to amidine/amine mixtures and
decompose near 50 °C, the amidinium dithiocarbamates do not revert to their amidine/amine
mixtures when they are heated. The thermal, rheological, conductance, and spectroscopic properties
of representative examples from a total of 50 of these ILs and RTILs are reported, comparisons
between them and their nonionic phases (as well as with their amidinium carbamates analogues) are
made, and the thermolysis pathways of the ammonium dithiocarbamates are investigated.
1. Introduction
for diverse applications.4 A subclass of RTILs can be
“switched” reversibly between their ionic and nonionic
states.5,6 This property has been exploited to separate
products (or catalysts) in a manner that allows the catalyst7
to be reused.8 Previously, we developed a class of thermally
reversible ionic liquids by adding CO2, a neutral triatomic
molecule and a greenhouse gas, to an equimolar mixture of
two nonionic molecules, an aliphatic amidine and an
amine.6 The chemistry associated with the formation of
the amidinium carbamate RTILs9 is shown in eq 1 in
Scheme 1. The RTILs can be transformed quantitatively
back to their nonionic components by passing an unreac-
tive “displacing” gas, such as molecular nitrogen, through
the ionic liquid. The nonionic and ionic states can be
switched repeatedly in this way without detectable degra-
dation of the system. Although the benign nature of this
switching process opens several potential applications for
ionic liquids, such as reversible catalyst formation10 and
Because they exhibit characteristics of “green sol-
vents”1 and offer rather unique physicochemical proper-
ties,2 ionic liquids (ILs) and especially room temperature
ionic liquids (RTILs)3 have become increasingly popular
*Corresponding author. E-mail: weissr@georgetown.edu.
(1) (a) Rogers, R. D.; Seddon, K. R., Eds. Ionic Liquids as Green
Solvents, Progress and Prospects; ACS Symposium Series; American
Chemical Society: Washington, D.C., 2003; Vol. 856. (b) Blanchard,
L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399,
28–29. (c) Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72,
1391–1398. (d) Rogers, R. D.; Seddon, K. R., Eds. Ionic Liquids:
Industrial Applications for Green Chemistry; ACS Symposium Ser-
ies; American Chemical Society: Washington, D.C., 2002; Vol. 818.
€
(2) (a) Weingartner, H. Angew. Chem., Int. Ed. 2008, 47, 654–670.
(b) Wishart, J. F.; Castner, E. W., Jr. J. Phys. Chem. B 2007, 111,
4639–4640. (c) Zhang, S.; Lu, X.; Zhou, Q.; Li, X.; Zhang, X.; Li, S.
Ionic liquids: Physicochemical Properties; Elsevier: Amsterdam, 2009.
(3) (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083. (b) Wasserscheid,
P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim,
Germany, 2003. (c) Wasserscheid, P.; Kein, W. Angew. Chem., Int. Ed.
2000, 39, 3773–3789. (d) Greaves, T. L.; Drummond, C. J. Chem.
Rev. 2008, 108, 206–237.
(4) (a) Anderson, J. L.; Armstrong, D. W.; Wei, G. Anal. Chem. 2006,
78, 2892–2902. (b) Ohno, H. Electrochemical Aspects of Ionic
Liquids; Wiley-Interscience: New York, 2005. (c) Sheldon, R. Chem.
Commun. 2001, 23, 2399–2407. (d) Han, X.; Armstrong, D. W. Acc.
Chem. Res. 2007, 40, 1079–1086. (e) Nockemann, P.; Thijs, B.;
Pittois, S.; Thoen, J.; Glorieux, C.; Van Hecke, K.; Van Meervelt,
L.; Kirchner, B.; Binnemans, K. J. Phys. Chem. B 2006, 110, 20978–
20992. (f) Malhotra., S. V., Ed. Ionic Liquids in Organic Synthesis;
ACS Symposium Series; American Chemical Society: Washington, D.
C., 2007; Vol. 950. (g) MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.;
Pringle, J. M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Acc. Chem.
Res. 2007, 40, 1165–1173.
(5) (a) Jessop, P. G.; Heldebrant, D. J.; Li, X.; Eckert, C. A.; Liotta,
C. L. Nature 2005, 436, 1102. (b) Heldebrant, D. J.; Jessop, P. G.;
Thomas, C. A.; Eckert, C. A.; Liotta, C. L. J. Org. Chem. 2005, 70,
5335–5338. (c) Phan, L.; Jessop, P. G. Green Chem. 2009, 11, 307–
308. (d) Hart, R.; Pollet, P.; Hahne, D. J.; John, E.; Llopis-Mestre,
V.; Blasucci, V.; Huttenhower, H.; Leitner, W.; Eckert, C. A.;
Liotta, C. L. Tetrahedron 2010, 66, 1082–1090. (e) Mercer, S. M.;
Jessop, P. G. ChemSusChem 2010, 3, 467–470.
(6) (a) Yamada, T.; Lukac, P. J.; George, M.; Weiss, R. G. Chem.
Mater. 2007, 19, 967–969. (b) Yamada, T.; Lukac, P. J.; Yu, T.;
Weiss, R. G. Chem. Mater. 2007, 19, 4761–4768. (c) Yu, T.;
Yamada, T.; Gaviola, G. C.; Weiss, R. G. Chem. Mater. 2008,
20, 5337–5344.
(7) (a) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002,
102, 3667–3692. (b) Parvulescu, V. I.; Hardacre, C. Chem. Rev.
2007, 107, 2615–1665. (c) Wasserscheid, P.; Keim, W. Angew.
Chem., Int. Ed. 2000, 39, 3772–3789. (d) Haumann, M.; Riisager,
A. Chem. Rev. 2008, 108, 1474–1497.
(8) (a) Phan, L.; Andreatta, J. R.; Horvey, L. K.; Edie, C. F.; Luco,
A.-L.; Mirchandi, A.; Darensbourg, D. J.; Jessop, P. G. J. Org.
Chem. 2008, 73, 127–132. (b) Blasucci, V.; Hart, R.; Llopis-
Mestre, V.; Hahne, D. J.; Burlager, M.; Huttenhower, H.; Thio,
B. J. R.; Eckert, C. A.; Liotta, C. L. Fuel 2010, 89, 1315–1319.
(9) (a) Hori, Y.; Nagano, Y.; Nakao, J.; Taniguchi, H. Chem. Express
1986, 1, 173–176. (b) Hori, Y.; Nagano, Y.; Nakao, J.; Fukuhara,
T.; Taniguchi, T. Chem. Express 1986, 1, 224–227.
(10) (a) Desset, S. L.; Cole-Hamilton, D. J. Angew. Chem., Int. Ed.
2009, 48, 1472–1474. (b) Andreetta, A; Barberis, G.; Gregorio, G.
Chim. Ind. 1978, 60, 887–891.
r
2010 American Chemical Society
pubs.acs.org/cm
Published on Web 09/17/2010