10.1002/anie.201908959
Angewandte Chemie International Edition
RESEARCHARTICLE
[9]
a) N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933-969; b) M. J. Van
Vleet, T. Weng, X. Li, J. R. Schmidt, Chem. Rev. 2018, 118, 3681-3721.
a) G. Ferey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble, J.
Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 6296-6301;
Angew. Chem. 2004, 116, 6456-6461;b) G. Ferey, C. Mellot-Draznieks,
C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 2005,
309, 2040-2041.
with strong Brønsted acids. Incorporation of chiral phosphoric
acids into MOFs leads to significant enhancement of their
Brønsted acidity and endows the frameworks with high catalytic
activity in the addition and reduction of imines, in which their
enantioselectivities can be modulated by varying the 3,3’-
substituents. DFT calculations suggest that the achieved high
enantioselectivity is attributed to the confined microenvironment
of catalytically active phosphoric acids in the framework.
Therefore, this work lifts the constraints placed on traditional solid
Brønsted acid catalysis and can lead to a new type of
heterogeneous acid catalysts for the eco-friendly synthesis of fine
chemicals.
[10]
[11]
[12]
D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114,
9047-9153.
a) J. P. Reid, J. M. Goodman, Chem. Eur.J. 2017, 23, 14248-14260; b)
L. W. Qi, J. H. Mao, J. Zhang, B. Tan, Nat. Chem. 2018, 10, 58-64; c) W.
Kashikura, K. Mori, T. Akiyama, Org. Lett. 2011, 13, 1860-1863.
a) X. Chen, Y. Peng, X. Han, Y. Liu, X. Lin, Y. Cui, Nat. Commun. 2017,
8, 2171; b) X. Chen, H. Jiang, B. Hou, W. Gong, Y. Liu, Y. Cui, J. Am.
Chem. Soc. 2017, 139, 13476-13482.
[13]
[14]
[15]
[16]
A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
C. Walling, J. Am. Chem. Soc. 1950, 72, 1164-1168.
Experimental Section
a) G. M. Chinigo, M. Paige, S. Grindrod, E. Hamel, S. Dakshanamurthy,
M. Chruszcz, W. Minor, M. L. Brown, J. Med. Chem. 2008, 51, 4620-
4631; b) M. Badolato, F. Aiello, N. Neamati, RSC Adv. 2018, 8, 20894-
20921.
Full experimental procedures and DFT calculations are provided in the
Supplemental Information.
[17]
a) S. Ayyanar, P. K. Vijaya, M. Mariyappan, V. Ashokkumar, V.
Sadhasivam, S. Balakrishnan, C. Chinnadurai, S. Murugesan, New J.
Chem. 2017, 41, 7980-7986; b) D. Huang, X. Li, F. Xu, L. Li, X. Lin, ACS
Catal. 2013, 3, 2244-2247; c) M. Rueping, A. P. Antonchick, E. Sugiono,
K. Grenader, Angew. Chem. Int. Ed. 2009, 48, 908-910; Angew. Chem.
2009, 121, 925-927; d) P. Du, H. Zhou, G. Shen, K. Zou, Chin. J. Org.
Chem. 2015, 35,1641-1649; e) X. Cheng, S. Vellalath, R. Goddard, B.
List, J. Am. Chem. Soc. 2008, 130, 15786-15787; f) D.-J. Cheng, Y. Tian,
S.-K. Tian, Adv. Syn. Catal. 2012, 354, 995-999; g) B. Zhang, L. Shi, R.
Guo, Catal. Lett. 2015, 145, 1718-1723.
Keywords: metal-organic frameworks • phosphoric acid •
Brønsted acid• asymmetric catalysis • porosity
[1]
M. E. Davis, Nature 2002, 417, 813-821.
[2]
a) F. Su, Y. Guo, Green Chem. 2014, 16, 2934-2957; b) J. Liang, Z. Liang,
R. Zou, Y. Zhao, Adv. Mater. 2017, 29,.1701139.
[3]
H‐U. Blaser, H-J. Federsel, Asymmetric Catalysis on Industrial Scale:
Challenges, Approaches and Solutions, Second Edition, Wiley-VCH,
Weinheim, 2010.
[18]
[19]
[20]
Y. Jiang, Y. Liu, S.-J. Tu, F. Shi, Tetrahedron: Asymmetry 2013, 24,
1286-1296.
[4]
[5]
a) Y. Liu, W. Xuan, Y. Cui, Adv. Mater. 2010, 22, 4112-4135; b) M. Yoon,
R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 11961231.
C. Zhu, K. Saito, M. Yamanaka, T. Akiyama, Acc. Chem. Res. 2015, 48,
388-398.
a) P. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, J. Am. Chem.
Soc. 2012, 134, 14991-14999; b) Q. Han, C. He, M. Zhao, B. Qi, J. Niu,
C. Duan, J. Am. Chem. Soc. 2013, 135, 10186-10189; c) K. Mo, Y. Yang,
Y. Cui, J. Am. Chem. Soc. 2014, 136, 1746-1749; d) T. Sawano, P. Ji, A.
R. McIsaac, Z. Lin, C. W. Abney, W. Lin, Chem. Sci. 2015, 6, 7163-7168;
e) T. Shi, Z. Guo, H. Yu, J. Xie, Y. Zhong, W. Zhu, Adv. Synth. Catal.
2013, 355, 2538-2543; f) Y. Zhang, J. Guo, L. Shi, Y. Zhu, K. Hou, Y.
Zheng, Z. Tang, Sci. Adv. 2017;3: e1701162; g) J. Li, Y. Ren, C. Qi, H.
Jiang, Chem. Commun. 2017, 53, 8223-8226; h) Z. Li, Y. Liu, X. Kang,
Y. Cui, Inorg. Chem. 2018, 57, 9786-9789.
a) M. Rueping, E. Sugiono, A. Steck, T. Theissmann, Adv. Syn. Catal.
2010, 352, 281-287; b) C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert,
A. Thomas, Adv. Syn. Catal. 2011, 353, 3101-3106; c) D. S. Kundu, J.
Schmidt, C. Bleschke, A. Thomas, S. Blechert, Angew. Chem. Int. Ed.
2012, 51, 5456; Angew. Chem. 2012, 124, 5552-5555. d) A. V. Malkov,
M. Figlus, P. Kocovsky, J. Org. Chem. 2008, 73, 3985-3995.
T. C. Nugent, Chiral Amine Synthesis: Methods, Developments and
Applications, Wiley-VCH: Weinheim, 2010.
[21]
[22]
a) S. Hoffmann, A. M. Seayad, B. List, Angew. Chem. Int. Ed. 2005, 44,
7424-7427; Angew. Chem. 2005, 117, 7590-7593; b) R. I. Storer, D. E.
Carrera, Y. Ni, D. W. MacMillan, J. Am. Chem. Soc .2006, 128, 84-86; c)
C. Zhu, T. Akiyama, Org. Lett. 2009, 11, 4180-4183; d) K. Saito, H.
Miyashita, T. Akiyama, Org. Lett. 2014, 16, 5312-5315.
[6]
a) C. Tan, X. Han, Z. Li, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140,
16229-16236; b) T. Sawano, N. C. Thacker, Z. Lin, A. R. McIsaac, W.
Lin, J. Am. Chem. Soc. 2015, 137, 12241-12248; c) M. Banerjee, S. Das,
M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo, K. Kim, J. Am.
Chem. Soc. 2009, 131, 7524-7525; d) D. Dang, P. Wu, C. He, Z. Xie, C.
Duan, J. Am. Chem. Soc. 2010, 132, 14321-14323; e) J. M. Falkowski,
T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard, W. Lin, J. Am.
Chem. Soc. 2014, 136, 5213-5216; f) L. Ma, J. M. Falkowski, C. Abney,
W. Lin, Nat. Chem. 2010, 2, 838-846; g) Q. Xia, Z. Li, C. Tan, Y. Liu, W.
Gong, Y. Cui, J. Am. Chem. Soc. 2017, 139, 8259-8266;
[23]
[24]
a) M. Rueping, A. P. Antonchick, T. Theissmann, Angew. Chem. Int. Ed.
2006, 45, 6751-6755; Angew. Chem. 2006, 118, 6903; b) Y. Zhang, R.
Zhao, R. L.-Y. Bao, L. Shi, Eur. J. Org. Chem. 2015, 3344-3351; c) M.
Rueping, F. Tato, F. R. Schoepke, Chem. Eur. J. 2010, 16, 2688-2691;
d) J. L. Nunez-Rico, A. Vidal-Ferran, Org. Lett. 2013, 15, 2066-2069.
a) L. Simon, J. M. Goodman, J. Am. Chem. Soc. 2008, 130, 8741-8747;
b) Y. Shibata, M. Yamanaka, J. Org. Chem. 2013, 78, 3731-3736.
[7]
a) K. Tanaka, K. Sakuragi, H. Ozaki, Y. Takada, Chem. Commun. 2018,
54, 6328-6331; b) M. Zheng, Y. Liu, C. Wang, S. Liu, W. Lin, Chem. Sci.
2012, 3. 2623-2627; c) Z. Zhang, Y. R. Ji, L. Wojtas, W. Y. Gao, S. Ma,
M. J. Zaworotko, J. C. Antilla, Chem. Commun. 2013, 49, 7693-7695; d)
D. J. Lun, G. I. Waterhouse, S. G. Telfer, J. Am. Chem. Soc. 2011, 133,
5806-5809; e) M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H.
Park, M. J. Rosseinsky, Chem. Commun. 2008, 1287-1289; f) L. Liu, T.
Y. Zhou, S. G. Telfer, J. Am. Chem. Soc. 2017, 139, 13936-13943.
a) G. K. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009,
38, 1430-1449; b) M. Taddei, F. Costantino, F. Marmottini, A. Comotti, P.
Sozzani, R. Vivani, Chem. Commun. 2014, 50, 14831-14834; c) S. Kim,
B. Joarder, J. A. Hurd, J. Zhang, K. W. Dawson, B. S. Gelfand, N. E.
Wong, G. K. H. Shimizu, J. Am. Chem. Soc. 2018, 140, 1077-1082.
[8]
This article is protected by copyright. All rights reserved.