1454, 1367, 1246; exact mass m/z calcd for C19H2579BrNaO2 (M +
Na) 387.09301, found 387.09299.
(705 mg, 2.35 mmol), CH2Cl2 (15 mL), Me3SiOSO2CF3 (1.3 mL,
7.05 mmol), Pd(OAc)2 (522 mg, 2.33 mmol) and MeCN (10 mL).
Flash chromatography of the crude product over silica gel (2.5 ×
25 cm), using 10% EtOAc-hexane, gave 17d (434 mg, 60%) as
1-(4-Bromobutyl)-4-oxo-1,4-dihydronaphthalene-1-carboxylic
acid tert-butyl ester (17a). General procedure A for oxidation
was followed, using CrO3 (3.48 g, 34.80 mmol), Ac2O (6.10 mL),
AcOH (10.0 mL), PhH (10 mL), 17 (2.54 g, 6.96 mmol) in PhH
(30 mL), and a reaction time of 3 h. Flash chromatography of the
crude product over silica gel (4 × 36 cm), using first hexane and
then EtOAc-hexane mixtures up to 3 : 7 EtOAc-hexane, gave 17a
(1.98 mg, 75%) as an oil: 1H NMR (CDCl3, 300 MHz) d 0.82–0.88
(m, 1 H), 1.22–1.25 (m, 1 H), 1.30 (s, 9 H), 1.68–1.70 (m, 2 H),
2.15 (ddd, J = 13.6, 12.2, 4.6 Hz, 1 H), 2.30 (ddd, J = 13.6, 12.3,
4.9 Hz, 1 H), 3.20–3.28 (m, 2 H), 6.56 (d, J = 10.3 Hz, 1 H), 6.92
(d, J = 10.3 Hz, 1 H), 7.41–7.46 (m, 1 H), 7.51–7.60 (m, 2 H), 8.16
(ddd, J = 7.9, 1.5, 0.6 Hz, 1 H); 13C NMR (CDCl3, 100 MHz) d
22.6 (t), 27.7 (q), 32.6 (t), 32.8 (t), 37.7 (t), 53.5 (s), 82.5 (s), 126.2
(d), 126.7 (d), 127.7 (d), 129.6 (d), 131.8 (s), 132.6 (d), 141.7 (s),
148.2 (d), 170.2 (s), 184.4 (s); mmax (CH2Cl2 cast; cm−1) 2977, 2933,
1729, 1667, 1456, 1244; exact mass m/z calcd for C19H2379BrNaO3
(M + Na) 401.07228, found 401.07211.
1
an oil: H NMR (CDCl3, 400 MHz) d 1.28 (s, 9 H), 1.37–1.42
(m, 2 H), 1.81–1.86 (m, 2 H), 2.00–2.60 (m, 1 H), 2.28–2.29 (m,
1 H), 2.60–2.71 (m, 1 H), 2.92–2.97 (m, 1 H), 6.42 (s, 1 H), 7.43–
7.59 (m, 1 H), 7.54–7.59 (m, 2 H), 8.21–8.23 (m, 1 H); 13C NMR
(CDCl3, 100 MHz) d 23.4 (t), 27.4 (q), 27.7 (t), 35.3 (t), 39.6 (t),
53.9 (s), 81.9 (s), 124.9 (d), 125.5 (d), 126.5 (d), 127.6 (d), 130.3
(s), 132.3 (d), 143.8 (s), 161.8 (s), 169.8 (s), 184.9 (s); mmax (CH2Cl2
cast; cm−1) 2935, 2861, 1727, 1663, 1560, 1254; exact mass m/z
calcd for C19H22NaO3 (M + Na) 321.14612, found 321.14608.
1,2,3,4-Tetrahydrophenanthren-9-ol (17e)20. General proce-
dure B for rearomatization was followed, using BiCl3.H2O (386 mg,
1.16 mmol), 17d (345 mg, 1.16 mmol) in MeCN (5 mL) and water
(0.1 mL), and a reaction time of 12 h. Flash chromatography of
the crude product over silica gel (1.5 × 15 cm), using 10% EtOAc-
1
hexane, gave 17e (188 mg, 82%) as an oil: H NMR (CDCl3,
400 MHz) d 1.87–1.90 (m, 2 H), 1.97–1.99 (m, 2 H), 2.83 (t, J =
6.1 Hz, 2 H), 3.06 (t, J = 6.3 Hz, 2 H), 5.40 (s, 1 H), 6.52 (s, 1 H),
7.46–7.51 (m, 1 H), 7.52–7.60 (m, 1 H), 7.97 (d, J = 8.4 Hz, 1 H),
8.23 (t, J = 8.3 Hz, 1 H); 13C NMR (CDCl3, 100 MHz) d 22.9 (t),
23.3 (t), 25.2 (t), 30.4 (t), 110.5 (d), 121.8 (d), 122.8 (s), 123.4 (s),
124.1 (d), 125.1 (s), 126.3 (d), 133.6 (s), 134.4 (s), 149.0 (s); mmax
(CDCl3 cast; cm−1) 3408, 2929, 2859, 1626, 1599; exact mass m/z
calcd for C14H14O 198.10446, found 198.10438.
1-(4-Iodobutyl)-4-oxo-1,4-dihydronaphthalene-1-carboxylic acid
tert-butyl ester (17b). The general procedure for Finkelstein
displacement was followed, using acetone (25 mL), 17a (1.81 g,
4.75 mmol), anhydrous NaI (2.49 g, 16.6 mmol), and a reaction
time of 17 h. Flash chromatography of the crude product over
silica gel (2 × 20 cm), using 10% EtOAc-hexane, gave 17b (1.86 g,
92%) as an oil: 1H NMR (CDCl3, 400 MHz) d 0.81–0.83 (m, 1 H),
1.15–1.20 (m, 1 H), 1.31 (s, 9 H), 1.70–1.75 (m, 2 H), 2.14–2.18 (m,
1 H), 2.25–2.30 (m, 1 H), 3.00–3.05 (m, 2 H), 6.57 (d, J = 11.3 Hz,
1 H), 6.94 (d, J = 11.3 Hz, 1 H), 7.42–7.47 (m, 1 H), 7.52–7.60 (m,
2 H), 8.19 (d, J = 7.8 Hz, 1 H); 13C NMR (CDCl3, 100 MHz) d 5.6
(t), 24.7 (t), 27.5 (q), 33.2 (t), 37.3 (t), 53.4 (s), 82.4 (s), 126.3 (d),
126.7 (d), 127.7 (d), 129.6 (d), 131.8 (s), 132.7 (d), 141.7 (s), 148.2
(d), 170.2 (s), 184.4 (s); mmax (CH2Cl2 cast; cm−1) 2925, 2853, 1727,
1665, 1600, 1242; exact mass m/z calcd for C19H23INaO3 (M +
Na) 449.05842, found 449.05835.
Acknowledgements
We thank the Natural Sciences and Engineering Research Council
of Canada for financial support.
References
1 (a) D. L. J. Clive, S. P. Fletcher and D. Liu, J. Org. Chem., 2004, 69,
3282–3293; (b) S. P. Fletcher, D. L. J. Clive, J. Peng and D. A. Wingert,
Org. Lett., 2005, 7, 23–26; (c) D. L. J. Clive, J. Peng, S. P. Fletcher, V. E.
Ziffle and D. Wingert, J. Org. Chem., 2008, 73, 2330–2344.
2 For an example of a mechanistically related process involving quinone
ketals, see: F. Villar, T. Kolly-Kovac, O. Equey and P. Renaud, Chem.–
Eur. J., 2003, 9, 1566–1577.
9-Oxo-1,3,4,9,10,10a-hexahydro-2H -phenanthrene-4a-carbo-
xylic acid tert-butyl ester (17c). The general procedure for radical
cyclization was followed, using Bu3SnH (0.21 mL, 0.77 mmol) and
AIBN (10.6 mg, 0.06 mmol) in PhH (5 mL), and 17b (275 mg,
0.65 mmol) in PhH (10 mL). Heating was continued for 12 h after
the addition. Flash chromatography of the crude product over
KF-flash chromatography silica gel (10%w/w KF) (1.5 × 17 cm),
using EtOAc-hexane mixtures, gave 17c (126 mg, 65%) as an oil:
1H NMR (CDCl3, 400 MHz) d 1.24–1.34 (m, 1 H), 1.36 (s, 9 H),
1.39–1.43 (m, 2 H), 1.57–1.61 (m, 3 H), 2.01–2.04 (m, 1 H), 2.22–
2.30 (m, 1 H), 2.61 (dd, J = 18.2, 7.9 Hz, 1 H), 2.77–2.81 (m, 2 H),
7.34 (ddd, J = 7.8, 7.2, 1.2 Hz, 1 H), 7.39–7.41 (m, 1 H), 7.53 (ddd,
3 (a) A. Pelter and S. Elgendy, Tetrahedron Lett., 1988, 29, 677–680;
(b) A. Pelter, R. S. Ward and A. Abd-El-Ghani, J. Chem. Soc., Perkin
Trans. 1, 1992, 2249–2251; (c) A. McKillop, L. McLaren and R. J. K.
Taylor, J. Chem. Soc., Perkin Trans. 1, 1994, 2047–2048; (d) D. M.
Goldstein and P. Wipf, Tetrahedron Lett., 1996, 37, 739–742; (e) A.
McKillop, L. McLaren, R. J. K. Taylor, R. J. Watson and N. J. Lewis,
J. Chem. Soc., Perkin Trans. 1, 1996, 1385–1393; (f) O. Karam, A.
Martin, M.-P. Jouannetaud and J.-C. Jacquesy, Tetrahedron Lett., 1999,
40, 4183–4186; (g) P. Camps, A. Gonza´lez, D. Mun˜oz-Torrero, M.
Simon, A. Zu´n˜iga, M. A. Martins, M. Font-Bardia and X. Solan,
Tetrahedron, 2000, 56, 8141–8151; (h) R. W. Van De Water, C. Hoarau
and T. R. R. Pettus, Tetrahedron Lett., 2003, 44, 5109–5113; (i) Q.
Liu and T. Rovis, J. Am. Chem. Soc., 2006, 128, 2552–2553; (j) M. C.
Carren˜o, M. Gonza´lez-Lo´pez and A. Urbano, Angew. Chem., Int. Ed.,
2006, 45, 2737–2741; (k) Oxidation of trimethylsilyl ethers of para-aryl
phenols gives yields in the range 66–82%: F.-X. Felpin, Tetrahedron
Lett., 2007, 48, 409–412. We found that the triisopropylsilyl ether of p-
propylphenol did not react with PhI(OCOCF3)2; (l) N. T. Vo, R. D. M.
Pace, F. O’Hara and M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 404–
405.
J = 7.9, 7.2, 1.5 Hz, 1 H), 7.81 (ddd, J = 7.9, 1.5, 0.5 Hz, 1 H); 13
C
NMR (CDCl3, 100 MHz) d 21.8 (t), 23.1 (t), 27.8 (q), 28.5 (t), 33.0
(t), 37.5 (d), 41.7 (t), 51.4 (s), 81.3 (s), 127.0 (d), 127.1 (d), 127.6
(d), 131.9 (s), 133.7 (d), 143.4 (s), 173.6 (s), 197.8 (s); mmax (CH2Cl2
cast; cm−1) 2934, 2862, 1721, 1692, 1599, 1246; exact mass m/z
calcd for C19H24NaO3 (M + Na) 323.16177, found 323.16166.
9-Oxo-1,3,4,9-tetrahydro-2H-phenanthrene-4a-carboxylic acid
tert-butyl ester (17d). The general procedure for Saegusa oxi-
dation was followed, using 2,6-lutidine (0.96 mL, 8.23 mmol), 17c
4 Y. Kita, H. Tohma, K. Kikuchi, M. Inagaki and T. Yakura, J. Org.
Chem., 1991, 56, 435–438.
2440 | Org. Biomol. Chem., 2008, 6, 2434–2441
This journal is
The Royal Society of Chemistry 2008
©