Communication
ChemComm
K. Shioji, Heterocycles, 2010, 81, 935; K. Okuma, K. Hirano,
C. Shioga, N. Nagahora and K. Shioji, Bull. Chem. Soc. Jpn., 2013,
86, 615.
7 A. A. Avestisyan, I. L. Aleksanyan and L. P. Ambartsumyan, Russ.
J. Org. Chem., 2007, 43, 1052; M. Manoj and K. J. Rajendra Prasad,
Synth. Commun., 2012, 42, 434.
8 J. T. Braunholtz and F. G. Mann, J. Chem. Soc., 1958, 3368.
9 M. Sellstedt and F. Almqvist, Org. Lett., 2011, 13, 5278; H. Wu,
W. Lin, Y. Wan, H. Q. Xin, D. Q. Shi, Y. H. Shi, R. Yuan, R. C. Bo and
W. Yin, J. Comb. Chem., 2010, 12, 31.
planar aromatic rings, such as EtBr and acridinium deriva-
tives,21,22 the interaction mode of 5a is predicted as an inter-
calation. The fluorescence of 5a was quenched with increasing
DNA concentration, as observed in several intercalators. Therefore,
one of the possible mechanisms for this quenching is the photo-
induced electron-transfer reaction between the excited compound
and the nucleic bases.22,23
We have synthesized dibenzo[b,h][1,6]naphthyridines in one pot
by reacting 2-acetylaminobenzaldehyde with acetophenone under
basic conditions. This method was also applied to the synthesis
of 1,2-dihydroquinolines. 6-Methyl-1,6-dibenzonaphthyridinium
triflates showed significant fluorescence and intercalated into
double-stranded DNA. Further studies on the novel features of
those reagents are in progress.
10 W. R. Vaughan, Org. Synth., Coll., 1955, 3, 329.
11 P. Cohn and L. Springer, Monatsh. Chem., 1903, 24, 87; C. L. Diedrich,
D. Haase, W. Saak and J. Christoffers, Eur. J. Org. Chem., 2008, 1811.
12 A typical reaction is as follows. To a solution of 2 (2.2 mmol) and 3a
(0.50 mmol) in EtOH was added 5 M aq. NaOH (0.24 mL, 1.2 mmol).
After refluxing for 8 h, the reaction mixture was concentrated and
left to stand for 2 h to yield orange crystals. Recrystallization from
EtOH gave orange crystals of 4a (0.41 mmol). Mp 234–236 1C.
¨
13 For a review, see: C.-C. Cheng and S.-J. Yan, The Friedlander
synthesis of quinolines, Organic Reactions, Wiley, Hoboken, 1982,
vol. 28. For an example, see: Q. Zhao, C.-Y. Jiang, M. Shi, F.-Y. Li,
T. Yi, Y. Cao and C.-H. Huang, Organometallics, 2006, 25, 3631.
Notes and references
1 For reviews, see: M. Balasubramanian and J. G. Keay, Pyridines and 14 P. Kothandaraman, S. J. Foo and P. W. H. Chan, J. Org. Chem., 2009,
their benzo derivatives: application, in Comprehensive Heterocyclic 74, 5947.
Chemistry II, ed. A. P. Katrizky, V. W. Rees and E. F. Scriven, 15 D. Migneault, M. A. Bernstein and C. K. Lau, Can. J. Chem., 1995,
Pergamon, Oxford, 1996, vol. 5, pp. 245–300; Name Reactions in 73, 1506.
Heterocyclic Chemistry, ed. J. J. Li, Wiley, Hoboken, 2005, ch. 9; 16 K. Kobayashi, S. Nagato, M. Kawakita, O. Morikawa and H. Konishi,
J. P. Michael, Nat. Prod. Rep., 2003, 20, 476–493; A. R. Katritzky,
S. Rachwal and B. Rachwal, Tetrahedron, 1996, 52, 1503.
2 For recent examples, see: K. Makino, O. Hara, Y. Takiguchi,
Chem. Lett., 1995, 24, 575.
17 K. Makino, O. Harada, Y. Takiguchi, T. Katano, Y. Asakawa,
K. Hatano and Y. Hamada, Tetrahedron Lett., 2003, 44, 8925.
T. Katano, Y. Asakawa, K. Hatano and Y. Hamada, Tetrahedron Lett., 18 The structures of 4a and 1a were confirmed by spectroscopic and
2003, 44, 8925; P. D. Pohlhaus, R. K. Bowman and J. S. Johnson,
J. Am. Chem. Soc., 2004, 126, 2294; C. S. Yi and S. Y. Yun, J. Am. Chem.
Soc., 2005, 127, 17000; X.-Y. Liu, P. Ding, J.-S. Huang and C.-M. Che,
Org. Lett., 2007, 9, 2645; S.-L. Cui, J. Wang and Y.-G. Wang, Tetra-
hedron, 2008, 64, 487.
X-ray crystallographic analyses. Crystallographic data for 4a: CCDC
1003324: monoclinic space group P21/n, a = 13.424(16) Å, b =
9.834(11) Å, c = 16.368(19) Å, a = 901, b = 113.546(7), g = 93.981(4),
Z = 4, R1 = 0.0902, wR2 = 0.2539. Compound 1a: CCDC 1003843:
monoclinic space group C2/c, a = 36.980(18) Å, b = 5.904(3) Å, c =
15.103(7) Å, a = 901, b = 90.257(9)1, g = 901. V = 3297(3) Å3, Z = 8, R1 =
0.0707, wR2 = 0.1356. CCDC contains the supplementary crystallo-
graphic data for compound 1a.
`
3 L. Moran, M.-E. Mirault, A. Tissieres, J. Lis, P. Schedl, S. Artavanis-
´
Tsakonas and W. Gehring, Cell, 1979, 17, 1; D. Reha, M. Kabelac,
´
F. Ryjacek, J. Sponer, J. E. Sponer, M. Elstner, S. Suhai and P. Hobza,
J. Am. Chem. Soc., 2003, 124, 3366.
4 H. Kimura, K. Torikai and I. Ueda, Chem. Pharm. Bull., 2009, 57, 393;
19 T. Suresh, T. Dhanabal, R. N. Kumar and P. S. Mohan, Indian
J. Chem., 2005, 44B, 2375.
R. B. Woodward and E. C. Kornfeld, J. Am. Chem. Soc., 1948, 70, 2508; 20 R. Oels, R. Storer and D. S. Young, J. Chem. Soc., Perkin Trans. 1, 1977, 2546.
M. Kratzel and A. Weigl, Monatsh. Chem., 1998, 129, 967. 21 B. A. D. Neto and A. A. M. Lapis, Molecules, 2009, 14, 1725.
5 For a recent review, see: T. T. Dao, H. J. M. Linthorst and R. Verpoorte, 22 C. Bohne, K. Faulhabe, B. Giese, A. Hafner, A. Hofmann, H. Ihmels,
¨
¨
¨
Phytochem. Rev., 2011, 10, 397. For an example, see: F. Toda, K. Tada
and K. Hamai, J. Chem. Soc., Perkin Trans. 1, 1990, 3207.
A. K. Kohler, S. Pera, F. Schneider and M. A. L. Sheepwash, J. Am.
Chem. Soc., 2005, 127, 76.
6 K. Okuma, J. Seto, N. Nagahora and K. Shioji, J. Heterocycl. Chem., 23 M. Sirajuddin, S. Ali and A. Badshah, J. Photochem. Photobiol., B,
2010, 47, 1372; K. Okuma, S. Ozaki, J. Seto, N. Nagahora and
2013, 124, 1.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014