Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 15 4391
resistance in Plasmodium falciparum. J. Med. Chem. 2006, 49, 5623–
5625.
peutics Program in the Division of Cancer Treatment and
Diagnosis of the National Cancer Institute.
(8) (a) Biot, C.; Daher, W.; Ndiaye, C. M.; Melnyk, P.; Pradines, B.;
Chavain, N.; Pellet, A.; Fraisse, L.; Pelinski, L.; Jarry, C.; Brocard,
J.; Khalife, J.; Forfar-Bares, I.; Dive, D. Probing the Role of the
Covalent Linkage of Ferrocene into a Chloroquine Template. J. Med.
Chem. 2006, 49, 4707–4714. (b) Biot, C.; Glorian, G.; Lucien, A.;
Maciejewski, L. A.; Brocard, J. Synthesis and Antimalarial Activity
in Vitro and in Vivo of a New Ferrocene-Chloroquine Analogue.
J. Med. Chem. 1997, 40, 3715–3718.
Supporting Information Available: Full experimental section.
References
(1) Antimalarial Chemotherapy; Rosenthal, P. J., Ed.; Humana Press,
Totowa, NJ, 2001, and references therein.
(9) (a) Vennerstrom, J. L.; Ager, A. L.; Dorn, A.; Andersen, S. L.; Gerena,
L.; Ridley, R. G.; Milhous, W. K. Bisquinolines. 2. Antimalarial N,N-
Bis(7-chloroquinolin-4-yl)heteroalkanediamines. J. Med. Chem. 1998,
41, 4360–4364. (b) Vennerstrom, J. L.; Ellis, W. Y.; Ager, A. L.;
Dorn, A.; Andersen, S. L.; Gerena, L.; Milhous, W. K. Bisquinolines.
1. N,N-Bis(7-chloroquinolin-4-yl)alkanediamines with potential against
Chloroquine-Resistant Malaria. J. Med. Chem. 1992, 35, 2129–2134.
(10) (a) Fawaz Mzayek, F.; Deng, H.; Mather, F. J.; Wasilevich, E.; Huayin
Liu, H.; Hadi, C. M.; Chansolme, D. H.; Murphy, H. A.; Melek, B. H.;
Tenaglia, A. N.; Mushatt, D. M.; Dreisbach, A. W.; Lertora, J. J. L.;
Krogstad, D. J. Randomized Dose-Ranging Controlled Trial of AQ-
13, a Candidate Antimalarial, and Chloroquine in Healthy Volunteers.
PLoS Clin. Trials 2007, 2, e6. (b) De, D.; Krogstad, F. M.; Byers,
L. D.; Krogstad, D. J. Structure-Activity Relationships for Antiplas-
modial Activity among 7-Substituted 4-Aminoquinolines. J. Med.
Chem. 1998, 41, 4918–4926, and references cited therein.
(2) Malaria is one of three most infectious diseases, and lack of a widely
available treatment regiment against the protozoan parasite Plasmodium
falciparum results in 300-500 million people annually becoming ill
from the disease, with over 1.5 million of these cases resulting in
death. For further information, see Malaria Foundation International,
(3) (a) Posner, G. H.; Chang, W.; Hess, L.; Woodard, L.; Sinishtaj, S.;
Usera, A. R.; Maio, W.; Rosenthal, A. S.; Kalinda, A. S.; D’Angelo,
J. G.; Petersen, K. S.; Stohler, R.; Chollet, J.; Santo-Tomas, J.; Snyder,
C.; Rottmann, M.; Wittlin, S.; Brun, R.; Shapiro, T. A. Malaria-Infected
Mice Are Cured by Oral Administration of New Artemisinin Deriva-
tives. J. Med. Chem. 2008, 51, 1035–1042, and references cited therein.
ˇ
(b) Opsenica, I.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Solaja,
B. A. Chemical Stability of the Peroxide Bond Enables Diversified
Synthesis of Potent Tetraoxane Antimalarials. J. Med. Chem. 2008,
51, 2261–2266, and references cited therein. (c) Vennerstrom, J. L.;
Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, F. C. K.; Chollet,
J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.;
Padmanilayam, M.; Santo Tomas, J.; Scheurer, C.; Scorneaux, B.;
Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W. N. Identification of
an antimalarial synthetic trioxolane drug development candidate.
Nature 2004, 430, 900–904. (d) Opsenica, D.; Pocsfalvi, G.; Juranic´,
(11) Burnett, J. C.; Schmidt, J. J.; Stafford, R. G.; Panchal, R. G.; Nguyen,
T. L.; Hermone, A. R.; Vennerstrom, J. L.; McGrath, C. F.; Lane,
D. J.; Sausville, E. A.; Zaharevitz, D. W.; Gussio, R.; Bavari, S. Novel
small molecule inhibitors of botulinum neurotoxin A metalloprotease
activity. Biochem. Biophys. Res. Commun. 2003, 310 (1), 84–93.
(12) Burnett, J. C.; Opsenica, D.; Sriraghavan, K.; Panchal, R. K.; Ruthel,
G.; Hermone, A. R.; Nguyen, T. L.; Kenny, T. A.; Lane, D. J.;
McGrath, C. F.; Schmidt, J. J.; Vennerstrom, J. L.; Gussio, R.; Bogdan,
ˇ
Z.; Tinant, B.; Declercq, J.-P.; Kyle, D. E.; Milhous, W. K.; Solaja,
B. A. Cholic Acid Derivatives as 1,2,4,5-Tetraoxane Carriers: Structure
and Antimalarial and Antiproliferative Activity. J. Med. Chem. 2000,
43, 3274–3282.
ˇ
A.; Solaja, B. A.; Bavari, S. A Refined Pharmacophore Identifies Potent
4-Amino-7-chloroquinoline-Based Inhibitors of the Botulinum Neu-
rotoxin Serotype A Metalloprotease. J. Med. Chem. 2007, 50, 2127–
2136.
(4) (a) Lanteri, C. A.; Johnson, J. D.; Waters, N. C. Recent Advances in
Malaria Drug Discovery. Recent Pat. Anti-InfectiVe Drug DiscoVery
2007, 2, 95–114. (b) Egan, T. J.; Helder, M.; Marques, H.M. The
role of haem in the activity of chloroquine and related antimalarial
drugs. Coord. Chem. ReV. 1999, 190-192, 493–517.
(13) Burnett, J. C.; Henchal, E. A.; Schmaljohn, A. L.; Bavari, S. The
evolving field of biodefence: therapeutic developments and diagnostics.
Nat. ReV. Drug DiscoVery 2005, 4, 281–297.
(14) For further elaboration of the chirality issues see ref 10 and Foye’s
Principles of Medicinal Chemistry, 5th ed.; Williams, D.A., Lemke,
T. L. , Eds.; Lippincott Williams & Wilkins: Chicago, 2002, p 49.
(15) All synthesized compounds were screened in vitro against three P.
falciparum strains: D6 (CQ and MFQ susceptible strain D6 (clone of
Sierra I/UNC isolate)), W2 (chloroquine-resistant, susceptible to
mefloquine, (clone of Indochina I isolate)), and TM91C235 (Thailand),
a multidrug-resistant strain (clone of South-East Asian isolate)
following the protocol given in ref 3c.
(5) (a) Kimberly Yearick, K.; Ekoue-Kovi, K.; Iwaniuk, D. P.; Natarajan,
J. K.; Alumasa, J.; de Dios, A. C.; Roepe, P. D.; Wolf, C. Overcoming
Drug Resistance to Heme-Targeted Antimalarials by Systematic Side
Chain Variation of 7-Chloro-4-aminoquinolines. J. Med. Chem. 2008,
51, 1995–1998, and references cited therein. (b) Miroshnikova, O. V.;
Hudson, T. H.; Gerena, L.; Kyle, D. E.; Lin, A. J. Synthesis and
Antimalarial Activity of New Isotebuquine Analogues. J. Med. Chem.
2007, 50, 889–896. (c) Solomon, V. R.; Haq, W.; Srivastava, K.; Puri,
S. K.; Katti, S. B. Synthesis and Antimalarial Activity of Side Chain
Modified 4-Aminoquinoline Derivatives. J. Med. Chem. 2007, 50, 394–
398. (d) Madrid, P. B.; Liou, A. P.; DeRisi, J. L.; Guy, R. K.
Incorporation of an intramolecular hydrogen-bonding motif in the side
chain of 4-aminoquinolines enhances activity against drug-resistant
P. falciparum. J. Med. Chem. 2006, 49, 4535–4543. (e) Solomon,
V. R.; Puri, S. K.; Srivastava, K.; Katti, S. B. Design and Synthesis
of New Antimalarial Agents from 4-Aminoquinoline. Bioorg. Med.
Chem. 2005, 13, 2157–2165.
(16) To the best of our knowledge, the selectivity index <1 involving an
3-chloro-4-aminoquinoline and W2 clone was found only on few
occasions: bis(aminoquinolines) (ref 7), ferroquine (ref 6b), and AQ-
40 (ref 8b).
(17) (a) Schmidt, J. J.; Stafford, R. G. A high-affinity competitive inhibitor
of type A botulinum neurotoxin protease activity. FEBS Lett. 2002,
532, 423–426. (b) Schmidt, J. J.; Bostian, K. A. Proteolysis of synthetic
peptides by type A botulinum neurotoxin. J. Protein Chem. 1995, 14,
703–708. (c) Schmidt, J. J.; Bostian, K. A. Endoproteinase activity of
type A botulinum neurotoxin: substrate requirements and activation
by serum albumin. J. Protein Chem. 1997, 16, 19–26. (d) Schmidt,
J. J.; Stafford, R. G.; Bostian, K. A. Type A botulinum neurotoxin
proteolytic activity: development of competitive inhibitors and im-
plications for substrate specificity at the S1¢ binding subsite. FEBS
Lett. 1998, 435, 61–64.
(6) Yeates, C. L.; Batchelor, J. F.; Capon, E. C.; Cheesman, N. J.; Fry,
M.; Hudson, A. T.; Pudney, M.; Trimming, H.; Woolven, J.; Bueno,
J. M.; Chicharro, J.; Ferna´ndez, E.; Fiandor, J. M.; Gargallo-Viola,
D.; Go´mez de las Heras, F.; Herreros, E.; Leo´n, M. L. Synthesis and
Structure-Activity Relationships of 4-Pyridones as Potential Anti-
malarials. J. Med. Chem. 2008, 51, 2845–2852.
(7) Burgess, S. J.; Selzer, A.; Kelly, J. X.; Smilkstein, M. J.; Riscoe, M. K.;
Peyton, D. H. A chloroquine-like molecule designed to reverse
JM800737Y