Macrocycle 3
J. de Mendoza, A. D. Hamilton and E. Giralt, Chem. Commun., 2000,
1399–1400.
6 (a) L. Sebo, B. Schweizer and F. Diederich, Helv. Chim. Acta, 2000, 83,
80–92; (b) L. Sebo, F. Diederich and V. Gramlich, Helv. Chim. Acta,
2000, 83, 93–113.
Macrocycle 9 (17 mg, 0.013 mmol) was taken into MeOH–DMF
(2 mL of a 1 : 1 mixture). 10% Pd/C (3 mg) was added and
the mixture stirred under H2 (1 atm) for 14 h. The mixture was
filtered through CeliteTM and the filtrate concentrated in vacuo. The
residue obtained was then taken into CH2Cl2–MeOH (6 mL of a 5 :
1 mixture) and HPF6 (10 lL of a 60% v/v aqueous solution, 0.04
mmol) was added. The solution was then concentrated in vacuo
and the residue suspended in H2O, filtration and drying in vacuo
gave◦the title compound as a white solid (13 mg, 77%); mp 183–
7 (a) I. Alfonso, F. Rebolledo and V. Gotor, Chem.–Eur. J., 2000, 6, 3331–
3338; (b) I. Alfonso, B. Dietrich, F. Rebolledo, V. Gotor and J.-M.
´
Lehn, Helv. Chim. Acta, 2001, 84, 280–295; (c) A. Gonza´lez-Alvarez,
I. Alfonso, P. D´ıaz, E. Garc´ıa-Espana and V. Gotor, Chem. Commun.,
2006, 1227–1229.
8 (a) Recent examples of related receptors for tricarboxylates in water:
S. L. Tobey and E. V. Anslyn, J. Am. Chem. Soc., 2003, 125, 10963–
10970; (b) S. L. Wiskur, J. L. Lavigne, A. Metzger, S. L. Tobey, V. Lynch
and E. V. Anslyn, Chem.–Eur. J., 2004, 10, 3792–3804; (c) C. Schmuck
and M. Schwegmann, J. Am. Chem. Soc., 2005, 127, 3373–3379; (d) A.
Frontera, J. Morey, A. Oliver, M. N. Pina, D. Quinonero, A. Costa,
P. Ballester, P. M. Deya and E. V. Anslyn, J. Org. Chem., 2006, 71,
7185–7195.
9 (a) S. Rossi, G. M. Kyne, D. L. Turner, N. J. Wells and J. D. Kilburn,
Angew. Chem., Int. Ed., 2002, 41, 4233–4236 [NB: macrocycle 2 is
incorrectly represented as the (1R,2R)-(+)-1,2-diphenyl enantiomer of
the 1S,2S-macrocycle for which binding studies are reported, in both
Schemes 1 and 2 of reference 9a]; (b) A. Ragusa, S. Rossi, J. M. Hayes,
M. Stein and J. D. Kilburn, Chem.–Eur. J., 2005, 11, 5674–5688.
10 G. M. Kyne, M. E. Light, M. B. Hursthouse, J. de Mendoza and J. D.
Kilburn, J. Chem. Soc., Perkin Trans. 1, 2001, 1258–1263.
11 (a) B. R. Linton, A. J. Carr, B. P. Orner and A. D. Hamilton, J. Org.
Chem., 2000, 65, 1566–1568; (b) R. J. Fitzmaurice, F. Gaggini, N.
Srinivasan and J. D. Kilburn, Org. Biomol. Chem., 2007, 5, 1706–1714.
12 Preparation of CbzNCS was adapted from: M. P. Groziak and L. B.
Townsend, J. Org. Chem., 1986, 51, 1277–1282.
1
185 C; H NMR (300 MHz, d6-DMSO): d = 4.43 (8H, d, J =
4.0 Hz, CH2NH), 5.66 (4H, br s, CHPh), 7.00–7.80 (40H, m,
+
ArH + NH2 ), 8.03 (4H, br s, NHCH2), 9.16 (4H, br s, NHCO)
ppm; 13C NMR (100 MHz, CDCl3–CD3OD): d = 47.5 (CH2), 61.8
(CH), 126.2 (CH), 128.9 (CH), 129.9 (CH), 130.4 (CH), 130.6
(CH), 131.4 (CH), 131.9 (CH), 133.3 (C), 137.5 (C), 138.9 (C),
141.5 (C), 171.5 (C) ppm; MS (ES+): m/z: 504 ([M + 2H]2+, 93%)
526 ([M + 2Na]2+, 100%) 1008 ([M + H]+, 30%); Found: C, 55.55;
H, 4.90; N, 10.77. Calc. for C62H60F12N10O4P2·2H2O: C, 55.77; H,
4.83; N, 10.89%.
References and notes
1 Review: E. Garc´ıa-Espana, P. D´ıaz, J. M. Llinares and A. Bianchi,
Coord. Chem. Rev., 2006, 250, 2952–2986.
13 NMR titration data was analysed using NMRTit HG software: A. P.
Bisson, C. A. Hunter, J. C. Morales and K. Young, Chem.–Eur. J.,
1998, 4, 845–851. All binding data from NMR titration experiments
are provided in the ESI†.
2 (a) Original work on polyamine macrocyclic receptors for carboxylates:
B. Dietrich, M. W. Hosseini, J.-M. Lehn and R. B. Sessions, J. Am.
Chem. Soc., 1981, 103, 1282–1283; (b) E. Kimura, A. Sakonaka, T.
Yatsunami and M. Kodama, J. Am. Chem. Soc., 1981, 103, 3041–3045;
(c) E. Kimura, M. Kodama and T. Yatsunami, J. Am. Chem. Soc., 1982,
104, 3182–3187; (d) M. W. Hosseini and J.-M. Lehn, J. Am. Chem. Soc.,
1982, 104, 3525–3527; (e) M. W. Hosseini and J.-M. Lehn, Helv. Chim.
Acta, 1986, 69, 587–603.
3 (a) Macrocyclic metal complexes: A. E. Martell and R. J. Motekaitis,
J. Am. Chem. Soc., 1988, 110, 8059–8064; (b) C. Bazzicalupi, A.
Bencini, A. Bianchi, V. Fusi, E. Garc´ıa-Espana, C. Giorgi, J. M.
Llinares, J. A. Ramirez and B. Valtancoli, Inorg. Chem., 1999, 38, 620–
621; (c) M. Boiocchi, M. Bonizzoni, L. Fabbrizzi, G. Piovani and A.
Taglietti, Angew. Chem., Int. Ed., 2004, 43, 3847–3852; (d) B. Verdejo,
J. Aguilar, A. Dome´nech, C. Miranda, P. Navarro, H. R. Jime´nez, C.
Soriano and E. Garc´ıa-Espana, Chem. Commun., 2005, 3086–3088;
(e) F. Li, R. Delgado and V. Fe´lix, Eur. J. Inorg. Chem., 2005, 4550–
4561.
14 The binding constants obtained for N-Boc-L/D-glutamate using NMR
titrations could not be determined with great accuracy. The dominant
binding constant in each case was at the upper limit of detectability
using this method (L. Fielding, Tetrahedron, 2000, 56, 6151–6170) and
the value obtained for the smaller binding constant in each case was
sensitive to the values used at the start of the iterative calculation and
could therefore not be determined to better than 1 significant figure.
Job plots give ambiguous results with broad maxima at stoichiometries
of ∼1–1.5.
15 C. S. Wilcox, J. C. Adrian Jr., T. H. Webb and F. J. Zawacki, J. Am.
Chem. Soc., 1992, 114, 10189–10197.
1
16 Poor resolution of the H NMR spectrum of 3 in 50% H2O–DMSO
results from sparing solubility of the macrocycle. In fact, neither the
amide nor guanidinium NH resonance were visible in the spectrum—
presumably because of fast exchange with the water.
4 (a) Reviews: P. Blondeau, M. Segura, R. Pe´rez-Ferna´ndez and J. de
Mendoza, Chem. Soc. Rev., 2007, 36, 198–210; (b) K. A. Schug and W.
Lindner, Chem. Rev., 2005, 105, 67–113; (c) M. D. Best, S. L. Tobey
and E. V. Anslyn, Coord. Chem. Rev., 2003, 240, 3–15.
17 A. Cooper, Curr. Opin. Chem. Biol., 1999, 3, 557–563 and references
therein.
18 (a) For the specific application of isothermal calorimetry to carboxylate
recognition, see: ref. 5d and 6a; (b) B. Linton and A. D. Hamilton,
Tetrahedron, 1999, 55, 6027–6038; (c) M. Berger and F. P. Schmidtchen,
J. Am. Chem. Soc., 1999, 121, 9986–9993.
19 The ITC data were obtained using a MicroCal VP-ITC isothermal
calorimeter at apparent pH 6.8 and are corrected for the heat generated
from dilution of the host. Data were analysed by non-linear least square
fitting using the Origin software supplied by MicroCal: T. Wiseman,
S. Williston, J. F. Brandts and L.-N. Lin, Anal. Biochem., 1989, 179,
131–137. All binding data from ITC experiments are provided in the
ESI†.
5 (a) B. Dietrich, T. M. Fyles, J.-M. Lehn, L. G. Pease and D. L. Fyles,
J. Chem. Soc., Chem. Commun., 1978, 934–936; (b) B. Dietrich, D. L.
Fyles, T. M. Fyles and J.-M. Lehn, Helv. Chim. Acta, 1979, 62, 2763–
2787; (c) P. Schiebl and F. P. Schmitdchen, Tetrahedron Lett., 1993,
34, 2449–2452; (d) B. R. Linton, M. S. Goodman, E. Fan, S. A. van
Arman and A. D. Hamilton, J. Org. Chem., 2001, 66, 7313–7319; (e) J.
Raker and T. E. Glass, J. Org. Chem., 2002, 67, 6113–6116; (f) H. Ait-
Haddou, S. L. Wiskur, V. M. Lynch and E. V. Anslyn, J. Am. Chem.
Soc., 2001, 123, 11296–11297; (g) for guanidinium derived receptors
able to bind to aspartate or glutamate rich peptides, see, for example:
X. Salvatella, M. W. Peczuh, M. Gair´ı, R. K. Jain, J. Sanchez-Quesada,
20 (a) S. Pikul and E. J. Corey, Org. Synth., 1993, 71, 22; (b) E. J. Corey,
D-H. Lee and S. Sarshar, Tetrahedron: Asymmetry, 1995, 6, 3–6.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 2340–2345 | 2345
©