Iron-catalyzed three-component sulfonamidoallylation reaction
References
[1] a) S. Kobayashi, Y. Mori, J. S. Fossey, M. M. Salter, Chem. Rev. 2011, 111,
2626; b) B. E. Maryanoff, H. C. Zhang, Chem. Rev. 2004, 104, 1431; c)
J. Royer, M. Bonin, Chem. Rev. 2004, 104, 2311; d) S. F. Martin, Acc.
Chem. Res. 2002, 35, 895; e) E. D. Cox, J. M. Cook, Chem. Rev. 1995,
95, 1797; f) T. A. Blumenkopf, L. E. Overman, Chem. Rev. 1986, 86, 857.
[2] For selected examples, see: a) S. Gao, Y. Q. Tu, X. Hu, S. Wang, R. Hua,
Y. Jiang, Y. Zhao, X. Fan, S. Zhang, Org. Lett. 2006, 8, 2373; b)
A. Padwa, M. D. Danca, Org. Lett. 2002, 4, 715; c) S. J. Danishefsky,
J. S. Panek, J. Am. Chem. Soc. 1987, 109, 917; d) H. Abe, S. Aoyagi,
C. Kibayashi, J. Am. Chem. Soc. 2005, 127, 1473; e) S. M. Weinreb, Acc.
Chem. Res. 2003, 36, 59.
Scheme 3. Tentative reaction pathway.
[3] For synthesis of protected secondary and tertiary homoallylic amines
from carbonyl, carbamate and allyltrimethylsilane, see: S. Pramanik,
P. Ghorai, Chem. Commun. 2012, 48, 1820.
[4] For catalytic three-component amidoallylation reactions using alde-
hydes, carbamates and allylsilane as reagents, see: a) K. K. Pasunooti,
M. L. Leow, S. Vedachalam, B. K. Gorityala, X. W. Liu, Tetrahedron Lett.
2009, 50, 2979; b) H. R. Kalita, P. Phukan, Synth. Commun. 2005, 35,
475; c) T. Ollevier, T. Ba, Tetrahedron Lett. 2003, 44, 9003; d)
G. Smitha, B. Miriyala, J. S. Williamson, Synlett 2005, 839; e) P. Phukan,
J. Org. Chem. 2004, 69, 4005.
aldehyde with the aid of FeCl3 to give the intermediate A, which
then loses FeCl3 and water to afford the sulfonylimine B. This
process is reversible. Subsequently, activation of sulfonylimine
B by FeCl3 followed by addition of allylsilane leads to a silyl-
stabilized carbocation C, which, after loss of the trimethylsilyl
group in the presence of water, would give rise to the corre-
sponding homoallylamine derivative.
[5] For
stoichiometric
BF3ꢀOEt2-catalyzed
three-component
amidoallylation reactions, see: a) J. S. Panek, N. F. Jain, J. Org. Chem.
1994, 59, 2674; b) S. J. Veenstra, P. Schmid, Tetrahedron Lett. 1997,
38, 997.
Conclusions
[6] For reaction of allylsilanes with in situ formed N-tosyliminium species in
the presence of stoichiometric SnCl2, see: Y. Masuyama, J. Tosa,
Y. Kurusu, Chem. Commun. 1999, 1075.
In summary, a mild, economical and environmentally benign three-
component sulfonamidoallylation reaction between aldehydes,
sulfonamides and allylsilanes for the synthesis of homoallylamine
derivatives has been achieved. The major advantages of this
method include: (i) using cheap and ecologically benign FeCl3 as
the catalyst; (ii) construction of a C–N bond and a C–C bond in a
one-pot procedure without advance preparation of unstable
aldimines; (iii) carrying out the reaction in air atmosphere without
additional anhydrous conditions; and (iv) excellent syn
stereoselectivity with γ-substituted allylsilanes. In addition, catalytic
three-component amidoallylation reactions involving in situ
formed sulfonylimines and allylsilanes have not been systematically
explored previously. The method described can serve as a supple-
ment to existing methodologies. Further refining this method in
organic synthesis is underway in our laboratory.
[7] For selected reviews and examples, see: a) M. Yus,
J. C. González-Gómez, F. Foubelo, Chem. Rev. 2011, 111, 7774, and
references therein; b) Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93,
2207; c) P. Thirupathi, S. S. Kim, Tetrahedron 2010, 66, 8623; d)
Q. Y. Song, B. L. Yang, S. K. Tian, J. Org. Chem. 2007, 72, 5407; e)
X. W. Sun, M. H. Xu, G. Q. Lin, Org. Lett. 2006, 8, 4979; f) T. Vilaivan,
C. Winotapan, V. Banphavichit, T. Shinada, Y. Ohfune, J. Org. Chem.
2005, 70, 3464; g) P. C. Andrews, A. C. Peatt, C. L. Raston, Tetrahedron
Lett. 2004, 45, 243; h) M. Billet, P. Klotz, A. Mann, Tetrahedron Lett.
2001, 42, 631; i) L. Niimi, K. Serita, S. Hiraoka, T. Yokozawa,
Tetrahedron Lett. 2000, 41, 7075; j) D. K. Wang, L. X. Dai, X. L. Hou,
Y. Zhang, Tetrahedron Lett. 1996, 37, 4187; k) Y. Yin, G. Zhao, G. L. Li,
Tetrahedron 2005, 61, 12042; l) R. Fan, D. Pu, F. Wen, Y. Ye, X. Wang,
J. Org. Chem. 2008, 73, 3623; m) S. Niclas, A. W. Olov, J. S. Kálmán,
Org. Lett. 2005, 7, 689; n) W. X. Li, J. H. Gan, R. H. Fan, Tetrahedron
Lett. 2010, 51, 4275; o) X. C. Qiao, S. F. Zhu, W. Q. Chen, Q. L. Zhou,
Tetrahedron: Asymmetry 2010, 21, 1216; p) S.-W. Li, R. A. Batey, Chem.
Commun. 2004, 1382.
Experimental
[8] a) M. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2013, 113, 5595;
b) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069; c) R. Bloch, Chem.
Rev. 1998, 98, 1407; d) D. L. Wright, J. P. Schulte II, M. A. Page, Org. Lett.
2000, 2, 1847; e) M. K. Pandey, C. S. Korapala, H. Ding, Tetrahedron Lett.
2005, 46, 2669; f) P. V. Ramachandran, T. E. Burghardt, L. Bland-Berry,
J. Org. Chem. 2005, 70, 7911; g) P. Besada, L. Mamedova,
C. J. Thomas, S. Costanzi, K. A. Jacobson, Org. Biomol. Chem. 2005, 3,
2016; h) J. C. A. Hunt, P. Laurent, C. J. Moody, Chem. Commun. 2000,
18, 1771.
To a solution of aldehyde (1mmol, 1.0 equiv.) in CH2Cl2 (5ml) were
added sulfonamide (1.5 equiv.) and FeCl3 (10 mol%, 98% purity;
purchased from Alfa Aesar). The resulting mixture was stirred at
40 °C for 1 h, and then allyltrimethylsilane (1.3 equiv.) was added.
The mixture was further stirred at 40°C until the aldehyde was
completely consumed (monitored using TLC). After that, the reac-
tion was quenched by addition of H2O (3ml) and then extracted
with ethyl acetate (3× 5 ml). The combined organic layer was
washed with brine, dried over Na2SO4 and concentrated. The crude
product was purified by column chromatography on silica gel with
a mixture of petroleum ether and ethyl acetate (10:1) to afford the
corresponding product. Note that when allyltrimethylsilane was
successively added to the reaction mixture, a lower yield of 4a
was obtained (77%). See the supporting information for details.
[9] X. Fan, H. Lv, Y. H. Guan, H. B. Zhu, X. M. Cui, K. Guo, Chem. Commun.
2014, 50, 4119.
[10] a) X. Fan, L. A. Fu, N. Li, H. Lv, X. M. Cui, Y. Qi, Org. Biomol. Chem. 2013,
11, 2147; b) X. Fan, X. M. Cui, Y. H. Guan, L. A. Fu, H. Lv, K. Guo, H. B. Zhu,
Eur. J. Org. Chem. 2014, 498; c) X. Fan, K. Guo, Y. H. Guan, L. A. Fu,
X. M. Cui, H. Lv, H. B. Zhu, Tetrahedron Lett. 2014, 55, 1068.
[11] For reviews and select examples of iron-catalyzed reactions, see: a)
C. Bolm, J. Legros, J. L. Paih, L. Zani, Chem. Rev. 2004, 104, 6217; b)
C. L. Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293; c) H. Li, W. Li,
W. Liu, Z. He, Z. Li, Angew. Chem. Int. Ed. 2011, 50, 2975; d)
S. Y. Zhang, Y. Q. Tu, C. A. Fan, F. M. Zhang, L. Shi, Angew. Chem. Int.
Ed. 2009, 48, 8761.
[12] a) J. Michaux, V. Terrasson, S. Marque, J. Wehbe, D. Prim,
J. M. Campagne, Eur. J. Org. Chem. 2007, 2601; b) C. R. Liu, F. L. Yang,
Y. Z. Jin, X. T. Ma, D. J. Cheng, N. Li, S. K. Tian, Org. Lett. 2010, 12, 3832.
[13] a) C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293; b)
M. N. Paddon-Row, N. G. Rondan, K. N. Houk, J. Am. Chem. Soc. 1982,
104, 7162; c) O. A. Wallner, K. J. Szabó, Chem. Eur. J. 2006, 12, 6976; d)
Acknowledgments
We thank the National Natural Science Foundation of China
(21162013) and Gansu Provincial Science and Technology Depart-
ment (project no. 1204WCGA017) for financial support and Prof.
Zhi-Xiang Yu for helpful discussions.
Appl. Organometal. Chem. 2015, 29, 588–592
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc