4-Quinolone-3-carboxylic Acid Motif
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 16 5083
3H). MS (ESI): m/z 306 [M + H]+, 328 [M + Na]+. IR (CHCl3):
ν 1726, 1689 cm-1. Anal. (C17H20FNO3) C, H, N.
(6) Marketing authorization of European Medicines Agency (EMEA) valid
throughout the European Union: June 19, 2006. European Public
Assessment Report (EPAR). Acomplia. Protocol EMEA/H/C/666.
(7) Malan, T. P., Jr.; Ibrahim, M. M.; Lai, J.; Vanderah, T. W.;
Makriyannis, A.; Porreca, F. CB2 cannabinoid receptor agonists: pain
relief without psychoactive effects. Curr. Opin. Pharmacol. 2003, 3,
62–67.
(8) Iwamura, H.; Suzuki, H.; Ueda, Y.; Kaya, T.; Inaba, T. In vitro and
in vivo pharmacological characterization of JTE-907, a novel selective
ligand for cannabinoid CB2 receptor. J. Pharmacol. Exp. Ther. 2001,
296, 420–425.
(9) Ofek, O.; Karsak, M.; Leclerc, N.; Fogel, M.; Frenkel, B.; Wright,
K.; Tam, J.; Attar-Namdar, M.; Kram, V.; Shohami, E.; Mechoulam,
R.; Zimmer, A.; Bab, I. Peripheral cannabinoid receptor, CB2, regulates
bone mass. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 696–701.
(10) Sanchez, C.; de Ceballos, M. L.; Go´mez del Pulgar, T.; Rueda, D.;
Corbacho, C.; Velasco, G.; Galve-Roperh, I.; Huffman, J. W.; Ramon
y Cajal, S.; Guzman, M. Inhibition of glioma growth in vivo by
selective activation of the CB2 cannabinoid receptor. Cancer Res. 2001,
61, 5784–5789.
CB1 and CB2 Receptors Binding Assays. The new compounds
were evaluated in CB1 and CB2 receptors binding assays using
membranes from HEK cells transfected with either the CB1 or CB2
receptor and [3H]-(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phe-
nyl]-trans-4-(3-hydroxypropyl)cyclohexanol ([3H]CP-55,940; Kd )
0.18 nM for CB1R and Kd ) 0.31 nM for CB2R) as the high affinity
ligand, as described by the manufacturer (Perkin-Elmer, Italy).29
Stock solutions of compounds were daily prepared in DMSO with
final DMSO concentration less than 0.1%. Displacement curves
were generated by incubating drugs with [3H]CP-55,940 (0.14 nM
for CB1R and 0.084 nM for CB2R binding assay). In all cases, Ki
values were calculated by applying the Cheng-Prusoff equation30
to the IC50 values (obtained by GraphPad) for the displacement of
the bound radioligand by increasing concentrations of the test
compounds.
Formalin Test in Mice. Mice received formalin (1.25%) in the
dorsal surface of one side of the hind paw. Each mouse was
randomly assigned to one of the experimental groups (n ) 8-10)
and placed in a Plexiglas cage and allowed to move freely for
15-20 min. A mirror was placed at a 45° angle under the cage to
allow full view of the hind paws. Lifting, favoring, licking, shaking,
and flinching of the injected paw were recorded as nociceptive
responses. Fifteen minutes before injection of formalin, mice
received intraperitoneal vehicle (10% DMSO in 0.9% NaCl, 50
µL) or 11c (1 or 3 mg/kg, ip) in the same volume solution, alone
or in combination with the selective CB2 antagonist, AM630 (3
mg/kg, ip), administered 5 min before the compound. The total
time of the nociceptive response was measured every 5 min and
expressed as the total time of the nociceptive responses in min
(mean ( SEM). Recording of nociceptive behavior commenced
immediately after formalin injection and was continued for 60 min.
(11) McKallip, R. J.; Lombard, C.; Fisher, M.; Martin, B. R.; Ryu, S.;
Grant, S.; Nagarkatti, P. S.; Nagarkatti, M. Targeting CB2 cannabinoid
receptors as a novel therapy to treat malignant lymphoblastic disease.
Blood 2002, 100, 627–634.
(12) Pertwee, R. G. Cannabinoids and multiple sclerosis. Pharmacol. Ther.
2002, 95, 165–174.
(13) Docagne, F.; Mun˜eto´n, V.; Clemente, D.; Ali, C.; Lor´ıa, F.; Correa,
F.; Hernango´mez, M.; Mestre, L.; Vivien, D.; Guaza, C. Excitotoxicity
in a chronic model of multiple sclerosis: Neuroprotection effects of
cannabinoids through CB1 and CB2 receptor activation. Mol. Cell.
Neurosci. 2007, 34, 551–561.
(14) Ortega-Gutierrez, S.; Molina-Holgado, E.; Are´valo-Mart´ın, A.; Correa,
F.; Viso, A.; Lopez-Rodriguez, M. L.; Di Marzo, V.; Guaza, C.
Activation of the endocannabinoid system as therapeutic approach in
a murine model of multiple sclerosis. FASEB J. 2005, 19, 1338–1340.
(15) Ram´ırez, B. G.; Bla´zquez, C.; Go´mez del Pulgar, T.; Guzma´n, M.; de
Ceballos, M. L. Prevention of Alzheimer’s disease pathology by
cannabinoids: neuroprotection mediated by blockade of microglial
activation. J. Neurosci. 2005, 25, 1904–1913.
Acknowledgment. We thank Dr. Maria Paola Castelli,
Dipartimento di Neuroscienze, University of Cagliari, Italy, for
helpful discussions. Authors from the CNR of Pozzuoli thank
Marco Allara` for technical assistance. Authors from the
University of Siena thank the Ministero dell’Universita` e della
Ricerca (PRIN 2006, Prot. n 2006030948_002) for financial
support.
(16) Giblin, G. M. P.; O’Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.;
Eatherton, A. J.; Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.;
Brown, A. J.; Haslam, C. P.; Clayton, N. M.; Wilson, A. W.; Chessell,
I. P.; Wittington, A. R.; Green, R. Discovery of 2-[(2,4-Dichlorophe-
nyl)amino]-N-[(tetrahydro-2H pyran-4-yl)methyl]-4-(trifluoromethyl)-
5-pyrimidinecarboxamide, a selective CB2 receptor agonist for the
treatment of inflammatory pain. J. Med. Chem. 2007, 50, 2597–2600.
(17) (a) Manera, C.; Benetti, V.; Castelli, M. P.; Cavallini, T.; Lazzaretti,
S.; Pibiri, F.; Saccomanni, G.; Tuccinardi, T.; Vannacci, A.; Martinelli,
A.; Ferrarini, P. L. Design, synthesis, and biological evaluation of
new 1,8-naphtyridin-4(1H)-on-3-carboxamide and quinolin-4-(1H)-
on-3-carboxamide derivatives as CB2 selective agonists. J. Med. Chem.
2006, 49, 5947–5957. (b) Manera, C.; Cascio, M. G.; Benetti, V.;
Allara`, M.; Tuccinardi, T.; Martinelli, A.; Saccomanni, G.; Vivoli,
E.; Ghelardini, C.; Di Marzo, V.; Ferrarini, P. L. New 1,8-naphthiridine
and quinoline derivatives as CB2 selective agonists. Bioorg. Med.
Chem. Lett. 2007, 17, 6505–6510.
Supporting Information Available: Synthetic and spectral data
for compounds 11b-k,m,n,p,q,v, 12a,c-f, 14b,c, 15b,c and
elemental analyses for compounds 11-17. This material is available
References
(18) Stern, E.; Muccioli, G.; Millet, R.; Goossens, J. F.; Farce, A.; Chavatte,
P.; Poupaert, J. H.; Lambert, D. M.; Depreux, P.; He´nichart, J. P. Novel
4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives as new CB2
cannabinoid receptors agonists: synthesis, pharmacological properties
and molecular modelling. J. Med. Chem. 2006, 49, 70–79.
(19) Massa, S.; Corelli, F.; Mai, A.; Artico, M.; Panico, S.; Simonetti, N.
Research on antibacterial and antifungal agents. XI. New antibacterial
quinolones related to pirfloxacin. Farmaco 1989, 44, 779–793.
(20) Stern, E.; Muccioli, G.; Bosier, B.; Hamtiaux, L.; Millet, R.; Poupaert,
J. H.; He´nichart, J. P.; Depreux, P.; Goossens, J. F.; Lambert, D. M.
Pharmacomodulations around the 4-oxo-1,4-dihydroquinoline-3-car-
boxamides, a class of potent CB2-selective cannabinoid receptor
ligands: consequences in receptor affinity and functionality. J. Med.
Chem. 2007, 50, 5471–5484.
(21) Silvestri, R.; Cascio, M. G.; La Regina, G.; Piscitelli, F.; Lavecchia,
A.; Brizzi, A.; Pasquini, S.; Botta, M.; Novellino, E.; Di Marzo, V.;
Corelli, F. Synthesis, hCB1 and hCB2 cannabinoid receptor affinity
and molecular modeling of substituted 1-phenyl-5-(1H-pyrrol-1-yl)-
1H-pyrazole-3-carboxamides, as potent pyrrole bioisosteres of rimona-
bant and SR144528. J. Med. Chem. 2008, 51, 1560–1576.
(22) This work was presented in part at the meeting Frontiers in CNS and
Oncology Medicinal Chemistry, Siena, Italy, October 7-9, 2007; P75.
(23) For the preparation of 4-(3-chloro-4-fluorophenoxy)aniline and 4-(phe-
nylthio)aniline, see the following: Fotsch, C.; Sonnenberg, J. D.; Chen,
N.; Hale, C.; Karbon, W.; Norman, M. H. Synthesis and structure-
activity relationships of trisustituted phenyl urea derivatives as
(1) (a) Ben Amar, M. Cannabinoids in medicine: a review of their
therapeutic potential. J. Ethnopharmacol. 2006, 105, 1–25. (b)
Piomelli, D. The endocannabinoid system: a drug discovery perspec-
tive. Curr. Opin. InVest. Drugs 2005, 6, 672–679. (c) Di Marzo, V.;
Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its
therapeutic exploitation. Nat. ReV. Drug DiscoVery 2004, 3, 771–784.
(2) Lambert, D. M.; Fowler, C. J. The endocannabinoid system: drug
targets, lead compounds, and potential therapeutic applications. J. Med.
Chem. 2005, 48, 5059–5087.
(3) (a) Lange, J. H. M.; Kruse, C. G. Medicinal chemistry strategies to
CB1 cannabinoid receptor antagonists. Drug DiscoVery Today 2005,
10, 693–702. (b) Barth, F. CB1 cannabinoid receptor antagonist. Annu.
Rep. Med. Chem. 2005, 40, 103–118. (c) Muccioli, G. G.; Lambert,
D. M. Latest advances in cannabinoid receptor antagonists and inverse
agonists. Expert Opin. Ther. Pat. 2006, 16, 1405–1423.
(4) Tucci, S. A.; Halford, J. C. G.; Harrold, J. A.; Kirkham, T. C.
Therapeutic potential of targeting the endocannabinoids; implications
for the treatment of obesity, metabolic syndrome, drug abuse and
smoking cessation. Curr. Med. Chem. 2006, 13, 2669–2680.
(5) (a) Rinaldi-Carmona, M.; Barth, F.; He´aulme, M.; Shire, D.; Calandra,
B.; Congy, C.; Martinez, S.; Maruani, J.; Ne´liat, G.; Caput, D.; Ferrara,
P.; Soubrie´, P.; Brelie`re, J. C.; Le Fur, G. SR141716A, a potent and
selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994,
350, 240–244. (b) Sorbera, L. A.; Castaner, J.; Silvestre, J. S.
Rimonabant hydrochloride. Drugs Future 2005, 30, 128–137.