Journal of the American Chemical Society
Page 8 of 11
1
2
3
4
5
6
7
8
Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294; (d)
decarbonylation is the rate-determining step. However, the
barrier of the reductive elimination of intermediate E is just
slightly lower. These results are consistent well with the
observed large 12C/13C kinetic isotope effects at both the
aromatic acid and adjacent aromatic carbons (Figure 10).
Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.;
Brookhart, M. Science 2006, 312, 257; (e) Matsuda, T.; Tsuboi, T.;
Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596; (f) Lee, S. I.;
Chatani, N. Chem. Commun. 2009, 371; (g) Ota, K.; Lee, S. I.; Tang,
J.-M.; Takachi, M.; Nakai, H.; Morimoto, T.; Sakurai, H.; Kataoka,
K.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 15203; (h) Nakai, K.;
Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 11066;
(i) Grenning, A. J.; Tunge, J. A. Angew. Chem. Int. Ed. 2011, 50,
1688; (j) Grenning, A. J.; Tunge, J. A. J. Am. Chem. Soc. 2011, 133,
14785.
(2) (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245; (b) Murakami,
M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97; (c) Jun, C.-H.
Chem. Soc. Rev. 2004, 33, 610; (d) Necas, D.; Kotora, M. Curr. Org.
Chem. 2007, 11, 1566; (e) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc.
Chem. Res. 2008, 41, 222; (f) Dermenci, A.; Coe, J. W.; Dong, G.
Org. Chem. Front. 2014, 1, 567; (g) Chen, F.; Wang, T.; Jiao, N.
Chem. Rev. 2014, 114, 8613; (h) Marek, I.; Masarwa, A.; Delaye,
P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
(3) (a) Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed. 1999,
38, 870; (b) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47,
1100.
(4) (a) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1984,
106, 7272; (b) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370,
540; (c) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am.
Chem. Soc. 1997, 119, 9307; (d) Murakami, M.; Itahashi, T.; Amii,
H.; Takahashi, K.; Ito, Y. J. Am. Chem. Soc. 1998, 120, 9949; (e)
Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.; Wada, K.;
Mitsudo, T.-a. J. Am. Chem. Soc. 2000, 122, 6319; (f) Kim, S.;
Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2002, 124, 762; (g)
Kondo, T.; Kaneko, Y.; Taguchi, Y.; Nakamura, A.; Okada, T.;
Shiotsuki, M.; Ura, Y.; Wada, K.; Mitsudo, T.-a. J. Am. Chem. Soc.
2002, 124, 6824; (h) Murakami, M.; Itahashi, T.; Ito, Y. J. Am.
Chem. Soc. 2002, 124, 13976; (i) Kondo, T.; Taguchi, Y.; Kaneko,
Y.; Niimi, M.; Mitsudo, T.-a. Angew. Chem. Int. Ed. 2004, 43, 5369;
(j) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005,
127, 6932; (k) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami,
M. Org. Lett. 2006, 8, 3379; (l) Yamamoto, Y.; Kuwabara, S.;
Hayashi, H.; Nishiyama, H. Adv. Synth. Catal. 2006, 348, 2493; (m)
Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc. 2007,
129, 12086; (n) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki,
K.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142; (o)
Souillart, L.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9640; (p)
Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 10733; (q) Chen,
P.-h.; Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 1674.
(5) (a) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J.
Am. Chem. Soc. 2001, 123, 10407; (b) Nishimura, T.; Araki, H.;
Maeda, Y.; Uemura, S. Org. Lett. 2003, 5, 2997; (c) Takada, Y.;
Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2006,
8, 2515; (d) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 3124; (e) Winter, C.; Krause, N. Angew. Chem. Int.
Ed. 2009, 48, 2460; (f) Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.;Wang,
X.; Shi, Z.-J. J. Am. Chem. Soc. 2011, 133, 15244; (g) Sai, M.;
Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2011, 50, 3294;
(h) Chen, K.; Li, H.; Li, Y.; Zhang, X.-S.; Lei, Z.-Q.; Shi, Z.-J.
Chem. Sci. 2012, 3, 1645.
The barrier of decarbonylation of intermediate
C
(TS -DeCO-C, 21.2 kcal/mol) is similar to that of
intermediate D. Whereas the barrier of the reductive
elimination of the decarbonylative intermediate form C is
much higher (TS-RE-EF-C, 29.5 kcal/mol). This may
account for the chemoselectivity. From the calculation, we
also confirmed the decarbonylation is involved in the rate
determining step, which consistent with the 12C/13C kinetic
studies.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Conclusion
In conclusion, we have developed an unprecedented
process to carry out the group exchange of two separated
carbonyl compounds. Two parts have been well proved
shaking their hands on the Rh(III) centre through two
different acyl-Rh intermediates. Isotopic-tracing studies and
by-product identification strongly supported the hypothesis
of group exchange via Rh catalysis. Systematic kinetic
experiments were conducted to find that decarbonylative is
the rate determining step. The calculation ascertained the
proposed mechanism and kinetic results. This study
extensively opens an eye to reconsider the organic synthesis
through completely new channel based on the reorganization
of the structural skeletons and group exchange. Further
investigations to explore new chemistry with this strategy are
underway in our laboratory.
ASSOCIATED CONTENT
Supporting Information
Details for calculation and experimental procedures, including
spectroscopic, analytical data of the new compounds are
reported in supporting information. “This material is available
free of charge via the Internet at http://pubs.acs.org.”
AUTHOR INFORMATION
Corresponding Author
Professor Yu-Xue Li, liyuxue@mail.sioc.ac.cn
Professor Jian Sun, sunjian@cib.ac.cn
Professor Zhang-Jie Shi, zshi@pku.edu.cn
Notes
The authors declare no competing financial interests.
(6) Youn, S. W.; Kim, B. S.; Jagdale, A. R. J. Am. Chem. Soc.
2012, 134, 11308.
(7)(a) van der Boom, M. E.; Kraatz, H.-B.; Ben-David, Y.;
Milstein, D. Chem. Commun. 1996, 2167; (b) Dermenci, A.;
Whittaker, R. E.; Dong, G. Org. Lett. 2013, 15, 2242.
(8) (a) Tobisu, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2006,
128, 8152; (b) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J.
Am. Chem. Soc. 2006, 128, 8146; (c) Nakao, Y.; Yada, A.; Ebata, S.;
Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428; (d) Nakao, Y.;
Ebata, S.; Yada, A.; Hiyama,T.; Ikawa, M.; Ogoshi, S. J. Am. Chem.
Soc. 2008, 130, 12874; (e) Watson, M. P.; Jacobsen, E. N. J. Am.
Chem. Soc. 2008, 130, 12594; (f) Nakao, Y.; Yada, A.; Hiyama, T.
J. Am. Chem. Soc. 2010, 132, 10024; (g) Rondla, N. R.; Levi, S. M.;
ACKNOWLEDGMENT
The authors gratefully acknowledge support for this work the
“973” project from the MOST of China (2015CB856600) and
2012SZ0219 from SCST and NSFC (grant nos. 21431008 and
21332001).
References
(1) (a) Vidal, V.; Théolier, A.; Thivolle-Cazat, J.; Basset, J.-M.
Science 1997, 276, 99; (b) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue,
Y. Organometallics 2001, 20, 3704; (c) Chatani, N.; Inoue, H.;
ACS Paragon Plus Environment