using the Oshima-Lombardo reagent has been extensively
studied.4 Indeed ketoaldehyde substrates produced both monoalk-
enes resulting from the methylenation of either the aldehyde or
the ketone moiety. Despite significant advantages, several
drawbacks remain associated with such a reaction, including
the use of stoichiometric amount of expensive and/or toxic
metals. We have recently disclosed a novel transition-metal-
catalyzed methylenation reaction of carbonyl compounds using
trimethylsilyldiazomethane, triphenylphosphine, and 2-propanol.5,6
Mechanistic studies revealed that methylenetriphenylphospho-
Transition-Metal-Catalyzed Chemoselective
Methylenation of Dicarbonyl Substrates
He´le`ne Lebel,* Michae¨l Davi, and Grzegorz T. Stokłosa
De´partement de Chimie, UniVersite´ de Montre´al, PaVillon
´
Roger Gaudry, 2900 Boul. Edouard-Montpetit, Montre´al,
Que´bec, Canada H3T 1J4
7
rane was the active species; this completely salt-free ylide
reacted with high chemoselectivity.5e However, no systematic
investigation has been published so far for the chemoselectivity
of the methylenation reaction using a phosphorus ylide reagent.
In this paper, we describe the use of bis-hydrocinnamate
derivatives as a conserved backbone to thoroughly study the
reactivity of ketones and aldehydes under various methylenation
reaction conditions using methylenetriphenylphosphorane.
We have previously reported that the rhodium-catalyzed
methylenation with trimethylsilyldiazomethane, triphenylphos-
phine, and 2-propanol of ketoaldehyde substrates 1 and 3
produced exclusively the corresponding monoalkene (2 and 4,
respectively) resulting from the aldehyde methylenation (eqs 1
and 2).5e Conversely, when methylenetriphenylphosphorane was
generated from methyltriphenylphosphonium bromide and
sodium hexamethyldisilazide, 15-30% of the corresponding
diene was observed leading to lower yields for the desired
product.
ReceiVed April 17, 2008
Rhodium- and copper-catalyzed methylenation reactions with
trimethylsilyldiazomethane, triphenylphosphine, and 2-pro-
panol were used to react chemoselectively with aldehydes,
alkoxymethylketones, and trifluoromethylketones in sub-
strates also containing a less reactive carbonyl group.
Terminal alkenes were obtained in high yields, and no
protecting group was necessary in the methylenation process.
Nucleophilic additions to carbonyl compounds typically
follow the reactivity order of aldehydes > ketones > esters
.amides . carboxylic acids.1 Such an order can be perturbed
by coordination of the carbonyl group with a Lewis acid.2 A
number of scattered examples of chemoselective olefination
reactions with carbonyl compounds have been previously
published,3 whereas only a few systematic studies were reported.
Among them, the chemoselectivity of the methylenation reaction
To further investigate the chemoselectivity of the methyl-
enation reaction, we have prepared a series of bis-hydrocin-
namate derivatives containing various carbonyl groups. Such
substrates (7-13) display a conserved backbone, and thus each
(1) Saito, S.; Yamamoto, H. In Modern Carbonyl Chemistry; Otera, J., Ed.;
Wiley-VCH: Weinheim, 2000; pp 33-67.
(2) (a) Asao, N.; Asano, T.; Yamamoto, Y. Angew Chem., Int. Ed. 2001, 40,
3206–3208, and references therein. (b) Yamamoto, H.; Maruoka, K.; Araki, Y.
Tetrahedron Lett. 1988, 29, 3101–3104.
(4) (a) Matsubara, S.; Oshima, K.; Utimoto, K. J. Organomet. Chem. 2001,
617, 39–46. (b) Matsubara, S.; Mizuno, T.; Otake, Y.; Kobata, M.; Utimoto, K.;
Takai, K. Synlett 1998, 1369–1371. (c) Okazoe, T.; Hibino, J.; Takai, K.; Nozaki,
H. Tetrahedron Lett. 1985, 26, 5581–5584.
(5) (a) Lebel, H.; Paquet, V.; Proulx, C. Angew. Chem., Int. Ed. 2001, 40,
2887–2890. (b) Grasa, G. A.; Moore, Z.; Martin, K. L.; Stevens, E. D.; Nolan,
S. P.; Paquet, V.; Lebel, H. J. Organomet. Chem. 2002, 658, 126–131. (c) Lebel,
H.; Paquet, V. Org. Lett. 2002, 4, 1671–1674. (d) Lebel, H.; Guay, D.; Paquet,
V.; Huard, K. Org. Lett. 2004, 6, 3047–3050. (e) Lebel, H.; Paquet, V. J. Am.
Chem. Soc. 2004, 126, 320–328. (f) Paquet, V.; Lebel, H. Synthesis 2005, 1901–
1905. (g) Lebel, H.; Davi, M.; Diez-Gonzalez, S.; Nolan, S. P. J. Org. Chem.
2007, 72, 144–149.
(6) For recent examples of application in total synthesis, see: (a) Kwon, M. S.;
Woo, S. K.; Na, S. W.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 1733–1735.
(b) Zhang, H.; Reddy, M. S.; Phoenix, S.; Deslongchamps, P. Angew. Chem.,
Int. Ed. 2008, 47, 1272–1275. (c) Lebel, H.; Parmentier, M. Org. Lett. 2007, 9,
3563–3566.
(3) Selected examples: (a) Olpp, T.; Bruckner, R. Angew. Chem., Int. Ed.
2006, 45, 4023–4027. (b) Trost, B. M.; Dirat, O.; Gunzner, J. L. Angew. Chem.,
Int. Ed. 2002, 41, 841–843. (c) Mergott, D. J.; Frank, S. A.; Roush, W. R. Org.
Lett. 2002, 4, 3157–3160. (d) Kahnberg, P.; Lee, C. W.; Grubbs, R. H.; Sterner,
O. Tetrahedron 2002, 58, 5203–5208. (e) Oesterreich, K.; Klein, I.; Spitzner,
D. Synlett 2002, 1712–1714. (f) Faure, S.; Piva, O. Tetrahedron Lett. 2001, 42,
255–259. (g) Kim, D.; Lee, J.; Chang, J.; Kim, S. Tetrahedron 2001, 57, 1247–
1252. (h) Colombo, M. I.; Zinczuk, J.; Mischne, M. P.; Ruveda, E. A.
Tetrahedron: Asymmetry 2001, 12, 1251–1253. (i) Nicolaou, K. C.; King, N. P.;
Finlay, M. R. V.; He, Y.; Roschangar, F.; Vourloumis, D.; Vallberg, H.; Sarabia,
F.; Ninkovic, S.; Hepworth, D. Bioorg. Med. Chem. 1999, 7, 665–697. (j) Hsu,
P.-Y.; Lee, Y.-C.; Liao, C.-C. Tetrahedron Lett. 1998, 39, 659–662. (k) Paquette,
L. A.; Heidelbaugh, T. M. Synthesis 1998, 495–508. (l) Evans, D. A.; Trotter,
B. W.; Cote, B.; Coleman, P. J.; Dias, L. C.; Tyler, A. N. Angew. Chem., Int.
Ed. 1997, 36, 2744–2747. (m) Wender, P. A.; Jesudason, C. D.; Nakahira, H.;
Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976–12977.
(7) Lebel, H.; Paquet, V. Organometallics 2004, 23, 1187–1190.
6828 J. Org. Chem. 2008, 73, 6828–6830
10.1021/jo800777w CCC: $40.75 2008 American Chemical Society
Published on Web 07/29/2008