J. J. M. Wiener et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1070–1074
1073
Table 3
Reinforcing the notion that factors beyond lysosomal accumula-
tion may be relevant to potency of these basic inhibitors is the
observation that repositioning the amide from the para to the meta
orientation as in 35–38 led not only to increased enzymatic
potency but also to significant cellular potency. Comparing
para-compound 32 and meta-compound 35 highlights this differ-
ential potency based on connectivity. The potency of these meta
analogs appears unaffected by positioning of the basic amine and
extent of basicity. It has been hypothesized that, in contrast to
thioethers such as 1 which occupy the S3 pocket and arylalkynes
such as 2 which extend into the S1 and S10 pockets, these meta
alkynes may interact with both S1 and S3 pockets.
Arylalkynes: replacement of P1/P10 amine substituent
Cl
N
N
N
S
R4
N
NH2
O
Entry R4
hCatS
JY Ii
Eq. Soln (pH
7,
M)b,c
a
a,b
IC50
IC50
M)
l
(l
M)
(l
Significantly, many of the analogs in Table 3 are markedly more
soluble than the compounds in Tables 1 and 2. This observed
improvement may owe to replacing the amine RHS with amido
or ethereal functionality or to elimination of the terminal aromatic
substituent.
These studies with pyrazole-based arylalkyne CatS inhibitors
have provided an expanded understanding of SAR within the P4,
P5 and P1/P10/P3 regions. The meta-substituted pyrollidinyl alkyne
35, containing thiomorpholine P5 and urea P4 moieties, displays
not only excellent potency but remarkable solubility improvement.
These data warrant further structural optimization studies with
the more soluble meta-alkyne CatS inhibitors, as well as investiga-
tions into the nature of their potential alternative binding mode.
Cl
H
N
30
31
32
0.12
0.09
0.07
>10
>10
>10
nd
nd
81
O
O
O
H
N
N
N
HN
(S)
H
N
33
34
0.07
0.12
>10
>10
nd
46
O
O
References and notes
O
1. (a) Gupta, S.; Kumar Singh, R.; Dastidar, S.; Ray, A. Expert Opin. Ther. Targets
2008, 12, 291; (b) Villandangos, J. A.; Bryant, R. A. R.; Deussing, J.; Driessen, C.;
Lennon-Dumenil, A.-M.; Riese, R. J.; Roth, W.; Saftig, P.; Shi, G.-P.; Chapman, H.
A.; Peters, C.; Ploegh, H. L. Immunol. Rev. 1999, 172, 109; (c) Nakagawa, T. Y.;
Rudensky, A. Y. Immunol. Rev. 1999, 172, 121; (d) Shi, G.-P.; Villadangos, J. A.;
Dranoff, G.; Small, C.; Gu, L.; Haley, K. J.; Riese, R.; Ploegh, H. L.; Chapman, H. A.
Immunity 1999, 10, 197.
2. Recent reviews: (a) Loeoesser, R. Expert Opin. Ther. Pat. 2011, 21, 585; (b) Lee-
Dutra, A.; Wiener, D. K.; Sun, S. Expert Opin. Ther. Pat. 2011, 21, 311; (c) Wiener, J.
J. M.; Sun, S.; Thurmond, R. L. Curr. Top. Med. Chem. 2010, 10, 717.
NH
rac
O
H
N
N
H
35
36
0.03
0.03
0.62
0.51
175
nd
(S
)
Cl
O
rac
N
H
NH
3. (a) Liu, H.; Tully, D. C.; Epple, R.; Bursulaya, B.; Li, J.; Harris, J. L.; Williams, J. A.;
Russo, R.; Tumanut, C.; Roberts, M. J.; Alper, P. B.; He, Y.; Karanewsky, D. S.
Bioorg. Med. Chem. Lett. 2005, 15, 4979; (b) Alper, P. B.; Liu, H.; Chatterjee, A. K.;
Nguyen, K. T.; Tully, D. C.; Tumanut, C.; Li, J.; Harris, J. L.; Tuntland, T.; Chang, J.;
Gordon, P.; Hollenbeck, T.; Karanewsky, D. S. Bioorg. Med. Chem. Lett. 2006, 16,
1486; (c) Tully, D. C.; Liu, H.; Alper, P. B.; Chatterjee, A. K.; Epple, R.; Roberts, M.
J.; Williams, J. A.; Nguyen, K. T.; Woodmansee, D. H.; Tumanut, C.; Li, J.;
Spraggon, G.; Chang, J.; Tuntland, T.; Harris, J. L.; Karanewsky, D. S. Bioorg. Med.
Chem. Lett. 1975, 2006, 16; (d) Tully, D. C.; Liu, H.; Chatterjee, A. K.; Alper, P. B.;
Williams, J. A.; Roberts, M. J.; Mutnick, D.; Woodmansee, D. H.; Hollenbeck, T.;
Gordon, P.; Chang, J.; Tuntland, T.; Tumanut, C.; Li, J.; Harris, J. L.; Karanewsky, D.
S. Bioorg. Med. Chem. Lett. 2006, 16, 5107; (e) Tully, D. C.; Liu, H.; Chatterjee, A.
K.; Alper, P. B.; Epple, R.; Williams, J. A.; Roberts, M. J.; Woodmansee, D. H.;
Masick, B. T.; Tumanut, C.; Li, J.; Spraggon, G.; Hornsby, M.; Chang, J.; Tuntland,
T.; Hollenbeck, T.; Gordon, P.; Harris, J. L.; Karanewsky, D. S. Bioorg. Med. Chem.
Lett. 2006, 16, 5112; (f) Chatterjee, A. K.; Liu, H.; Tully, D. C.; Guo, J.; Epple, R.;
Russo, R.; Williams, J.; Roberts, M.; Tuntland, T.; Chang, J.; Gordon, P.;
Hollenbeck, T.; Tumanut, C.; Li, J.; Harris, J. L. Bioorg. Med. Chem. Lett. 2007, 17,
2899; (g) Cai, J.; Robinson, J.; Belshaw, S.; Everett, K.; Fradera, X.; van Zeeland,
M.; van Berkom, L.; van Rijnsbergen, P.; Popplestone, L.; Baugh, M.; Dempster,
M.; Bruin, J.; Hamilton, W.; Kinghorn, E.; Westwood, P.; Kerr, J.; Arbuckle, W.;
Bennett, D. J.; Jones, P. S.; Long, C.; Martin, I.; Uitdehaag, J. C. M.; Meulemans, T.
Bioorg. Med. Chem. Lett. 2010, 20, 6890; (h) Cai, J.; Fradera, X.; van Zeeland, M.;
Dempster, M.; Cameron, K. S.; Bennett, D. J.; Robinson, J.; Popplestone, L.; Baugh,
M.; Westwood, P.; Bruin, J.; Hamilton, W.; Kinghorn, E.; Long, C.; Uitdehaag, J. C.
M. Bioorg. Med. Chem. Lett. 2010, 20, 4507; (i) Cai, J.; Bennett, D. J.; Rankovic, Z.;
Dempster, M.; Fradera, X.; Gillespie, J.; Cumming, I.; Finlay, W.; Baugh, M.;
Boucharens, S.; Bruin, J.; Cameron, K. S.; Hamilton, W.; Kerr, J.; Kinghorn, E.;
McGarry, G.; Robinson, J.; Scullion, P.; Uitdehaag, J. C. M.; van Zeeland, M.; Potin,
D.; Saniere, L.; Fouquet, A.; Chevallier, F.; Deronzier, H.; Dorleans, C.; Nicolai, E.
Bioorg. Med. Chem. Lett. 2010, 20, 4447; (j) Cai, J.; Baugh, M.; Black, D.; Long, C.;
Bennett, D. J.; Dempster, M.; Fradera, X.; Gillespie, J.; Anrews, F.; Boucharens, S.;
Bruin, J.; Cameron, K. S.; Cumming, I.; Hamilton, W.; Jones, P. S.; Kaptein, A.;
Kinghorn, E.; Maidment, M.; Martin, I.; Mitchell, A.; Rankovic, Z.; Robinson, J.;
Scullion, P.; Uitdehaag, J. C. M.; Vink, P.; Westwood, P.; van Zeeland, M.; van
Berkom, L.; Bastiani, M.; Meulemans, T. Bioorg. Med. Chem. Lett. 2010, 20, 4350.
4. (a) Baker, S. M.; Karlsson, L.; Thurmond, R. L. Protein Expr. Purif. 2003, 28, 93; (b)
Thurmond, R. L.; Beavers, M. P.; Cai, H.; Meduna, S. P.; Gustin, D. J.; Sun, S.;
Almond, H. J.; Karlsson, L.; Edwards, J. P. J. Med. Chem. 2004, 47, 4799; (c)
Cl
O
O
N
37
38
N
H
0.04
0.13
0.61
0.63
9
Cl
O
N
66
NH
Cl
a
CatS IC50 and JY Ii degradation IC50 values are the mean of n P2 runs and
determined as described previously.3a,c All IC50 values were within a twofold range.
b
‘nd’ Denotes data not determined
c
pH
7 Phosphate buffer equilibrium solubility determination using LCMS
quantification.
highlight a limit to the flexibility in position of the basic amine that
had been identified previously.5d Ether linkages (33 and 34) led to
similar results.
Indeed, while accumulation of basic, lipophilic inhibitors of
lysosomal cysteine proteases in the acidic lysosomal compartment
has been reported, such lysosomotropism typically results in en-
hanced cellular inhibition relative to the inhibition observed in
purified enzyme assays.4f,8 In the case of the inhibitors reported
here, no such disparity is observed; in fact, the cellular IC50s of
these inhibitors are typically 3- to 12-fold higher than their enzy-
matic IC50s. Nonetheless, the possibility that lysosomal accumula-
tion has a role in the cellular potency of these basic inhibitors must
be considered, in regard to selectivity over other cathepsins as well
as in the potential for phospholipidosis.