U. D. Patil, P. P. Mahulikar / Tetrahedron Letters 54 (2013) 343–346
345
b
compared to the arylamine group and the degree of nucleophilicity
of the nature of N-1 compared to N-3.
SCH3
4
3
3 CN
2
5
6
Ar''
Ar'
HN
We have described a ‘green’, novel, concerted, economical, effi-
cient and a highly selective synthetic protocol for pyrimidin-4-yli-
dene acetonitriles, that is, N-substituted pyrimidines 3a–p. As an
illustrative application of this strategy, symmetrical, unsymmetri-
cal and heteroaryl derivatives of pyrimidin-4-ylideneacetonitrile
derivatives were successively synthesized. The developed method
is far superior to the known literature procedures in terms of ease
of work-up, use of economical and readily available reagents, in the
absence of catalysts or source of external energy and mild reaction
condition. Also, it is felt that the methodology provides a general
route for creating molecular diversity by selecting the reactants
as per the requirement of the substituents on the aryl rings. Possi-
ble reaction pathways are suggested.
2
HN
Ar
O1
O
1
a
2
a route
1
a route X
O
O
O
b route
Ar''
NH
CN
N
Ar''
CN
HN
O
NC
H3CS
H3CS
Ar''
N
Ar'
N
Ar
Ar
Ar
N
Ar''
5
Ar'
-NHAr''
-CO2
SCH3
O
Ar''
NH
CN
N
O
H3CS
N
N
Ar'
Ar'
Ar
Ar
Supplementary data
Supplementary data (general experimental procedures of 2H-
pyran-3-carbonitriles (1) and amidines (2), spectroscopic data,
copies of LCMS, 1H NMR, 13C NMR and check cif file of compound
3p) associated with this article can be found, in the online version,
SCH3
CN
SCH3
Ar''
N
_
N
Ar
N
Ar'
N
Ar'
Ar
4
_SCH3
References and notes
N
1. Farhanullah; Samrin, F.; Ram, V. J. Tetrahedron Lett. 2007, 48, 8213.
2. Ram, V. J.; Agarwal, N.; Saxena, A. S.; Farhanullah; Sharon, A.; Maulik, P. R. J.
Chem. Soc., Perkin Trans. 1 2000, 1426.
Ar''
N
3. Goel, A.; Singh, F. V. Tetrahedron Lett. 2005, 46, 5585.
4. Goel, A.; Verma, D.; Dixit, M.; Raghunandan, R.; Maulik, P. R. J. Org. Chem. 2006,
71, 804.
Ar
N
Ar'
3
5. Bhosale, S. V.; Patil, U. D.; Kalyankar, M. B.; Nalage, S. V.; Patil, V. S.; Desale, K. R.
J. Heterocycl. Chem. 2010, 47, 691.
6. Patil, U. D.; Mahulikar, P. P. J. Heterocycl. Chem. 2012. April 2012, accepted,
Manuscript no. JHET-12-0032.
Scheme 2. The plausible mechanism for the formation of substituted compounds
3a–p.
7. Pharmaceutical Chemistry, Drug Synthesis; Roth, H. J., Kleeman, A., Eds.; Prentice
Hall Europe: London, 1998; Vol. 1, p 407.
8. Li, A.-H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.-d.; Jacobson, K. A. J. Med. Chem.
1999, 42, 706.
9. Kawamura, S.; Hamada, T.; Sato, R.; Sanemitsu, Y.; Sandmann, G.; Babczinski, P.
J. Agric. Food Chem. 1991, 39, 2279.
10. Moffett, R. B.; Rober, A.; Skaletzky, L. L. J. Med. Chem. 1971, 10, 963.
11. Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am. Chem. Soc. 1988,
110, 6471.
2. The detailed list of synthesized derivatives is given in Table 1. All
the synthesized compounds were isolated and purified.37 The as-
signed structure for 3 is supported by an X-ray crystallographic
structure determination (Fig. 1). CCDC 829798 contains the supple-
mentary crystallographic data for 3p.38 Even though, we found that
the overall yield ranges from 31% to 60%, the methodology is still
very useful since it is a one pot protocol which produces highly
functionalized pyrimidine.
12. Patil, U. D.; Nikum, A. P.; Nagle, P. S.; Mahulikar, P. P. J. Pharm. Res. 2012, 5,
1383.
13. Williams, D. R.; Lowder, P. D.; Gu, Y.-G. Tetrahedron Lett. 1997, 38, 327.
14. Teshima, Y.; Shin-ya, K.; Shimazu, A.; Furihata, K.; Chul, H. S.; Furihata, K.;
Hayakawa, Y.; Nagai, K.; Seto, H. J. Antibiot. 1991, 44, 685.
15. Kozhevnikov, V. N.; Kozhevnikov, D. N.; Nikitina, T. V.; Rusinov, V. L.;
Chupakhin, O. N.; Zabel, M.; Konig, B. J. Org. Chem. 2003, 68, 2882.
16. Singh, B. K.; Mishra, M.; Saxena, N.; Yadav, G. P.; Maulik, P. R.; Sahoo, M. K.;
Gaur, R. L.; Murthy, P. K.; Tripathi, R. P. Eur. J. Med. Chem. 2008, 43, 2717.
17. Jonak, J. P.; Zakrzewski, S. F.; Mead, L. H. J. Med. Chem. 1972, 15, 662.
18. Cieplik, J.; Stolarczyk, M.; Pluta, J.; Gubrynowicz, O.; Bryndal, I.; Lis, T.;
Mikulewicz, M. Acta Pol. Pharm. Drug Res. 2011, 68, 57.
19. Keutzberger, A.; Gillessen, J. Arch. Pharm. 1985, 318, 370.
20. Dorigo, P.; Fraccarollo, D.; Santostasi, G.; Maragno, I.; Floreani, M.; Borea, P. A.;
Mosti, L.; Sansebastiano, L.; Fossa, P.; Orsini, F.; Benetollo, F.; Bombieri, G. J.
Med. Chem. 1996, 39, 3671.
21. Wright, W. B.; Tomcufeik, A. S.; Marisco, J. W. J. U.S. 4325955, 1982; Chem.
Abstr. 1982, 97, 23818q.
22. Ram, V. J. Arch. Pharm. (Weinheim) 1991, 324, 837.
23. Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem.
2005, 13, 4645.
24. Eddington, N. D.; Cox, D. S.; Roberts, R. R.; Butcher, R. J.; Edafiogho, I. O.;
Stables, J. P.; Cooke, N.; Goodwin, A. M.; Smith, C. A.; Scott, K. R. Eur. J. Med.
Chem. 2002, 37, 635.
25. Lehn, J.-M. Supramolecular Chemistry-Concepts and Perspectives; VCH:
Weinheim, 1995. Chapter 9.
All the synthesized compounds (3a–p, Table 1) were character-
ized by spectroscopic techniques and confirmed by elemental anal-
ysis for C, H and N.
We developed the approach for the synthesis of pyrimidin-4-
ylidene acetonitriles 3a–p based on the nucleophile induced ring
transformation of 2H-pyran-3-carbonitrile 1 with N-arylbenzami-
dine or N-arylpicolinamidine 2 as depicted in Scheme 2. It is evi-
dent from the topography of 2H-pyran-2-ones, that it may be
considered as a cyclic ketene hemimethylthio acetal with three
electrophilic centres, namely, C-2, C-4 and C-6 in its molecular ma-
keup. However, the C-6 position is highly susceptible to nucleo-
philic attack due to an extended conjugation and the presence of
an electron withdrawing substituent at position 3 of the pyran
ring.
The mechanism reported on Scheme 2 considers the following
steps: (a) nucleophilic addition of the N1 to the C6, (b) CO2 elimi-
nation with the corresponding ring cleavage, (c) recyclization
involving the N3 nitrogen of amidine and C4 of the pyrane ring,
(d) elimination of the thiomethyl group to yield (2E)-2-[2,3,6-aryl-
pyrimidin-4(3H)-ylidene)acetonitrile derivatives 3a–p. The possi-
bility of the formation of products 4 & 5 also exists but under the
given experimental conditions, only product 3 has been isolated.
This may be due to the facile elimination of the thiomethyl group
26. Harriman, A.; Ziessel, R. Coord. Chem. Rev. 1998, 171, 331.
27. Gompper, R.; Mair, H.-J.; Polborn, K. Synthesis 1997, 696.
28. Weis, A. L.; Rosenbach, V. Tetrahedron Lett. 1981, 22, 1453.
29. Granik, V. G.; Kaimanakova, S. I. Khim. Geterotsikl. Soedin. 1983, 6, 657.
30. Bredereckef, H.; Gompper, R.; Morlock, G. Chem. Ber. 1957, 90, 942.
31. Bredereck, H.; Gompper, R.; Schuh, H. G. V.; Theilig, G. Angew. Chem. 1959, 71,
753.