10.1002/hlca.201900052
Helvetica Chimica Acta
HELVETICA
[19] S. Loosli, C. Foletti, M. Papmeyer, H. Wennemers, ‘Synthesis of 4-
(Arylmethyl)proline Derivatives’, Synlett 2019, 30, 508-510.
[20] L. M. Salonen, M. Ellermann, F. Diederich, ‘Aromatic rings in
chemical and biological recognition: energetics and structures‘,
Angew. Chem. Int. Ed., 2011, 50, 4808-4842.
[21] S. Wu, J. P. Declercq, B. Tinant, M. Vanmeerssche, ‘Crystal-Structure
and Conformation of Short Linear Peptides: PartVIII: L-Leucyl-L-
Tryptophanyl-L-Leucine Hydrochloride Dihydrate’, B. Soc. Chim.
Belg. 1987, 96, 581-586.
[22] D. V. Soldatov, I. L. Moudrakovski, J. A. Ripmeester, ‘Dipeptides as
microporous materials’, Angew. Chem. Int. Ed. 2004, 43, 6308-6311.
[23] I. Moudrakovski, D. V. Soldatov, J. A. Ripmeester, D. N. Sears, C. J.
Jameson, ‘XeNMR lineshapes in channels of peptide molecular
crystals’, Proc. Natl. Acad. Sci. USA 2004, 101, 17924-17929.
[24] C. H. Görbitz, ‘An exceptionally stable peptide nanotube system
with flexible pores’, Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58,
849-854.
[25] C. George, J. L. Flippen-Anderson, A. Bianco, M. Crisma, F.
Formaggio, C. Toniolo, ‘Crystallographic characterization of
tryptophan-containing peptide 3(10)-helices’, Peptide Res. 1996, 9,
315-321.
Author Contribution Statement
CF obtained the single crystals and NT solved the crystal structure. SL
recorded the other analytical data. CF, NT, and HW contributed to the
analysis of the crystal structure and the writing of the manuscript.
References
[1]
[2]
M. D. Shoulders, R. T. Raines, ‘Collagen Structure and Stability’,
Annu. Rev. Biochem. 2009, 78, 929-958.
S. C. R. Lummis, D. L. Beene, L. W. Lee, H. A. Lester, R. W. Broadhurst,
D. A. Dougherty, ‘Cis-trans isomerization at a proline opens the
pore of a neurotransmitter-gated ion channel’, Nature 2005, 438,
248-252.
[3] S. A. Lieblich, K. Y. Fang, J. K. B. Cahn, J. Rawson, J. LeBon, H. T. Ku, D.
A. Tirrell, ‘4S-Hydroxylation of Insulin at ProB28 Accelerates
Hexamer Dissociation and Delays Fibrillation’, J. Am. Chem. Soc.
2017, 139, 8384-8387
[4]
A. J. Metrano, N. C. Abascal, B. Q. Mercado, E. K. Paulson, A. E.
Hurtley, S. J. Miller, ‘Diversity of Secondary Structure in Catalytic
Peptides with beta-Turn-Biased Sequences’, J. Am. Chem. Soc. 2017,
139, 492-516.
[26] L. G. J. Hammarstrom, M. L. McLaughlin, F. R. Fronczek, ‘CCDC
1023909: Experimental Crystal Structure Determination’, CSD
Commun. 2014.
[5]
[6]
B. Lewandowski, H. Wennemers, ‘Asymmetric catalysis with short-
chain peptides’, Curr. Opin. Chem. Biol. 2014, 22, 40-46.
L. E. Seijas, G. E. Delgado, A. J. Mora, A. N. Fitch, M. Brunelli, ‘On the
crystal structures and hydrogen bond patterns in proline
pseudopolymorphs’, Powder Diffr. 2010, 25, 235-240.
R. L. Kayushina, B. K. Vainshtein, ‘X-ray determination of the
structure of L-proline’, Kristallografiya 1965, 10, 833-844.
C. H. Gorbitz, ‘Crystal structures of amino acids: from bond lengths
in glycine to metal complexes and high-pressure polymorphs’,
Crystallogr. Rev. 2015, 21, 160-212.
[7]
[8]
[9]
J. Krapcho, C. Turk, D. W. Cushman, J. R. Powell, J. M. DeForrest, E. R.
Spitzmiller, D. S. Karanewsky, M. Duggan, G. Rovnyak, J. Schwartz,
et al., ‘Angiotensin-converting enzyme inhibitors. Mercaptan,
carboxyalkyl dipeptide, and phosphinic acid inhibitors
incorporating 4-substituted prolines’, J. Med. Chem. 1988, 31, 1148-
1160.
[10] D. Seebach, T. Vettiger, H. M. Muller, D. A. Plattner, W. Petter,
‘Stereoselective Hydroxyalkylations of (S)-2-Azetidinecarboxylic
Acid’, Liebigs Ann. Chem. 1990, 687-695.
[11] S. Hanessian, N. Bernstein, R. Y. Yang, R. Maguire, ‘Asymmetric
synthesis of L-azetidine-2-carboxylic acid and 3-substituted
congeners--conformationally constrained analogs of phenylalanine,
naphthylalanine, and leucine’, Bioorg. Med. Chem. Lett. 1999, 9,
1437-1442.
[12] Y. A. Nagel, P. S. Raschle, H. Wennemers, ‘Effect of Preorganized
Charge Display on the Cell Penetrating Properties of Cationic
Peptides‘ Angew. Chem. Int. Ed., 2017, 56, 122-126.
[13] C. Kroll, R. Mansi, F. Braun, S. Dobitz, H. Maecke, H. Wennemers,
‘Hybrid Bombesin Analogues – Combining an Agonist and an
Antagonist in Defined Distances for Optimized Tumor Targeting‘, J.
Am. Chem. Soc., 2013, 135, 16793-16796.
[14] N. B. Hentzen, L. E. J. Smeenk, J. Witek, S. Riniker, H. Wennemers,
‘Cross-Linked Collagen Triple Helices by Oxime Ligation‘,J. Am.
Chem. Soc., 2017, 139, 12815-12820.
[15] U. Lewandowska, W. Zajaczkowski, S. Corra, J. Tanabe, R. Borrmann,
E. M. Benetti, S. Stappert, K. Watanabe, N. A. K. Ochs, R. Schaeublin,
C. Li, E. Yashima, W. Pisula, K. Müllen, H. Wennemers, ‘A Triaxial
Supramolecular Weave‘, Nat. Chem., 2017, 9, 1068-1072.
[16] T. Schnitzer, H. Wennemers, ‘Influence of the trans/cis Conformer
Ratio on the Stereoselectivity of Peptidic Catalysts‘, J. Am. Chem.
Soc., 2017, 139, 15356-15362
[17] C. Rigling, J. K. Kisunzu, J. Duschmalé, D. Häussinger, M. Wiesner,
M.-O. Ebert, H. Wennemers, ‘Conformational Properties of a
Peptidic Catalyst: Insights from NMR Spectroscopic Studies‘, J. Am.
Chem. Soc., 2018, 140, 10829-10838.
[18] C. Foletti, R. A. Kramer, H. Mauser, U. Jenal, K. H. Bleicher, H.
Wennemers, ‘Functionalized Proline-Rich Peptides Bind the
Bacterial Second Messenger c-di-GMP’, Angew. Chem. Int. Ed. 2018,
57, 7729-7733.
4
This article is protected by copyright. All rights reserved.