C O M M U N I C A T I O N S
Table 1. Oligonucleotides Used in This Study and MALDI-TOF MS Analysisa
uncoupled
coupled
found
ODNs
sequence
calcd
found
calcd
1
2
3
4
5′-TG U3N6ACGTGCGAU1C6TTCG
5′-TG U3N6ACGTGCGATU1C6TCG
5′-TG U3N6ACGTGCGATTU1C6CG
5′-TG U3N6ACGTG(PCL)CGATU1C6TCG
5729.2
5729.2
5729.2
5988.4
5729.4
5728.4
5728.9
5988.4
5711.2
5711.2
5711.2
5970.4
5711.3
5710.5
5711.0, 5728.1
5969.1
b
a Cross-turn coupling trials were conducted with a DNA hairpin as template. b PCL: Photocleavable linker.
proaches that employ 5′- and 3′-terminal linkers.5a,9 To test the
feasibility of postsynthetic modification of these tails, the catenane
containing ODN 4 was subjected to 5′- and 3′-32P labeling in two
experiments. The generation of 3′-labeled (Figure 3, lane 1) and
5′-labeled product (lane 3) are readily visible in the autoradiogram
of the denaturing gel. Thus, this cross-turn coupling strategy may
be advantageous for nucleic acid labeling. In principle, nucleic acids
of any sequence could be targeted and labeled by this approach.
In conclusion, coupling across a DNA helical turn was achieved
utilizing ODNs decorated with 2′-functionalized linkers. The
formation of a doubly tailed catenane based on this strategy
demonstrates intrastrand cross-linking. The free ends of the
catenated PEG-amide-oligonucleotides provide useful handles for
postsynthetic modification or labeling.
Acknowledgment. We gratefully acknowledge support by the
NSF (CTS-0608889) to N.C.S. and J.W.C., Grant GM-076202 from
NIGMS to J.W.C., and by Grants GM-29554 from NIGMS, Grant
CCF-0726378 from the NSF, Grants 48681-EL and MURI W911NF-
07-1-0439 from ARO, and a Grant from the W. M. Keck
Foundation to N.C.S.
Figure 2. Denaturing gel analysis of the dissociation of the tailed catenane
by BamH I digestion and UV cleavage. Lane 1: 10bp DNA ladder marker.
Lane 2: UV-cleaved products of coupled strand 4. Lane 3: 78-mer DNA
circle. Lane 4: UV-cleaved products of the tailed catenane. Lane 5: The
tailed catenane. Lane 6: BamH I digested products of the tailed catenane.
Lane 7: BamH I digested products of 78-mer DNA circle. Lane 8: Coupled
strand 4. Lane 9: Uncoupled strand 4. L: Linear DNA. C: Circular DNA.
Supporting Information Available: Full experimental details
including: Syntheses of phosphoramidites, MALDI-TOF MS of ODNs,
LCMS analysis of complete nuclease digestion, denaturing gel analyses
of catenane synthesis, exonuclease digestion, and dissociation by
restriction enzyme treatment. This material is available free of charge
References
(1) For recent reviews, see: (a) Arico, F.; Badjic, J. D.; Cantrill, S. J.; Flood,
A. H.; Leung, K. C. F.; Liu, Y.; Stoddart, J. F. Top. Curr. Chem. 2005, 249
(Templates in Chemistry II), 203-259. (b) Champin, B.; Mobian, P.;
Sauvage, J. P. Chem. Soc. ReV. 2007, 36, 358–366. (c) Kay, E. R.; Leigh,
D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72–191. (d) Lankshear,
M. D.; Beer, P. D. Acc. Chem. Res. 2007, 40, 657–668.
(2) Seeman, N. C. In Synthetic DNA Topology, Molecular Catenanes, Rotaxanes
and Knots; Sauvage, J.-P., Dietrich-Buchecker, D., Eds.; Wiley-VCH:
Weinheim, 1999; pp 323-356..
(3) Liang, X. G.; Kuhn, H.; Frank-Kamenetskii, M. D. Biophys. J. 2006, 90,
2877–2889.
(4) (a) El-Sagheer, A. H.; Kumar, R.; Findlow, S.; Werner, J. M.; Lane, A. N.;
Brown, T. ChemBioChem 2008, 9, 50–52. (b) Walter, N. G.; Burke, J. M.
Curr. Opin. Chem. Biol. 1998, 2, 24–30. (c) Glick, G. D. Biopolymers 1998,
48, 83–96.
(5) (a) Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.; Wilhelmsson, L. M.;
Brown, T. J. Am. Chem. Soc. 2007, 129, 6859–6864. (b) Endo, M.; Uegaki,
S.; Majima, T. Chem. Commun. 2005, 3153–3155. (c) Endo, M.; Seeman,
N. C.; Majima, T. Angew. Chem., Int. Ed. 2005, 44, 6074–6077.
(6) (a) Zhu, L.; Lukeman, P. S.; Canary, J. W.; Seeman, N. C. J. Am. Chem.
Soc. 2003, 125, 10178–10179. (b) Liu, Y.; Wang, R.; Ding, L.; Sha, R.;
Lukeman, P. S.; Canary, J. W.; Seeman, N. C. ChemBioChem 2008, 9, 1641–
1648. (c) Liu, Y., Sha, R., Wang, R., Ding, L., Canary, J. W., Seeman, N.
C. Tetrahedron, in press.
Figure 3. Autoradiogram of a denaturing gel showing both 5′ and 3′
labeling of the tailed catenane. Lane 1: 3′-32P labeling of the tailed catenane.
Lane 2: 3′-32P labeling of 78-mer DNA circle. Lane 3: 5′-32P labeling of
the tailed catenane. Lane 4: 5′-32P labeling of 78-mer DNA circle. Lane 5:
10bp DNA ladder marker.
(7) Andersen, C. S., Yan, H., Gothelf, K. Angew. Chem., Int. Ed. 2008, 47,
5569–5572.
The catenane formation reaction may be viewed as a “padlock”
function as the oligonucleotide acted as a probe to recognize the
target circular DNA, and interlocking was accomplished by the
pendent linkers. The 2′-localization of the linkers creates a
bibracchial lariat structure,8 leaving the free 5′- and 3′-ends of the
oligonucleotides available to serve as accessible sites for further
modification or labeling, which is an advantage over prior ap-
(8) Gokel, G. W.; Barbour, L. J.; Ferdani, R.; Hu, J. Acc. Chem. Res. 2002, 35,
878–886.
(9) (a) Ryan, K.; Kool, E. T. Chem. Biol. 1998, 5, 59–67. (b) Escude, C.;
Garestier, T.; Helene, C. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10603–
10607. (c) Demidov, V. V.; Kuhn, H.; Lavrentieva-Smolina, I. V.; Frank-
Kameneteskii, M. D. Methods 2001, 23, 123–131.
JA8041096
9
J. AM. CHEM. SOC. VOL. 130, NO. 33, 2008 10883