4920
W.-Z. Xu et al. / Tetrahedron Letters 49 (2008) 4918–4921
Figure 3. Fluorescence emission spectra of 3a and 3b in the presence of different substrates (a: free, b: D-glucose, c: D-galactose, d: galacturonic acid, e: lactic acid, f: malic
acid, g: tartaric acid) with same concentration. Left: [3a] = 1.4 Â 10À2 mM, [Substrate] = 5.0 mM, kex = 297 nm; right: [3b] = 1.6 Â 10À2 mM, [Substrate] = 5.0 mM,
kex = 257 nm.
Table 1
Acknowledgements
Stability constant K (MÀ1) for
a
-hydroxy acids of fluorescent sensor 3a and 3b, in pH
8.71 buffer at kex 297 nm (3a) and 257 nm (3b)
We thank the National Natural Science Foundation of China
(No. 20773134), the Major State Basic Research Development
Program of China (No. 2007CB8008005) and the Chinese Academy
of Sciences (KJCX2-YW-H13) for financial support.
a
-Hydroxy acids
3a
3b
Tartaric acid
Malic acid
Lactic acid
440
290
100
100
2300
700
270
270
Galacturonic acid
References and notes
1. (a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem., Int. Ed. 1996,
35, 1910–1922; (b) James, T. D.; Shinkai, S. Top. Curr. Chem. 2002, 218, 159–200;
(c) James, T. D. In Boronic Acids: Preparation and Applications in Organic Synthesis
and Medicine; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2004; pp 441–480; (d)
James, T. D.; Philips, M. D.; Shinkai, S. Boronic Acids in Saccharide Recognition;
RSC Publishing: Cambridge, 2006.
2. (a) Friedman, S.; Pizer, R. J. Am. Chem. Soc. 1975, 97, 6059–6062; (b) Zhao, J.;
Fyles, T. M.; James, T. D. Angew. Chem., Int. Ed. 2004, 43, 3461–3464; (c) Zhao, J.
Z.; Davidson, M. G.; Mahon, M. F.; Kociok-Kohn, G.; James, T. D. J. Am. Chem. Soc.
2004, 126, 16179–16186; (d) Wiskur, S. L.; Lavigne, J. J.; Metzger, A.; Tobey, S.
L.; Lynch, V.; Anslyn, E. V. Chem. Eur. J. 2004, 10, 3792–3804; (e) Zhao, J.; James,
T. D. Chem. Commun. 2005, 1889–1891.
In this sensing system, fluorescence decrease may involve inter-
nal charge-transfer (ICT) mechanism because the amino groups are
integrated into the fluorophore in the receptors.11 The
p- electron
system of the receptors has very different dipole moments in their
ground and lowest energy singlet excited states due to the internal
charge-transfer. Upon complexing, the heteroatom will change the
interaction state with the substrate and therefore affect the dipole
moment of the fluorophore. It is known that the B–N bond can be
broken to form boronate species B on addition of saccharide. But
the stability constant for this reaction balance is low.6 In our sys-
3. Frirdich, E.; Bouwman, C.; Vinogradov, E.; Whitfield, C. J. Biol. Chem. 2005, 280,
27604–27612.
4. (a) James, T. D.; Sandanayake, K. R. A. S.; Iguchi, R.; Shinkai, S. J. Am. Chem. Soc.
1995, 117, 8982–8987; (b) Gao, X.; Zhang, Y.; Wang, B. Org. Lett. 2003, 5, 4615–
4618; (c) Wang, Z.; Zhang, D.; Zhu, D. J. Org. Chem. 2005, 70, 5729–5732; (d)
Zhang, Y.; Gao, X.; Hardcastle, K.; Wang, B. Chem. Eur. J. 2006, 12, 1377–1384.
5. Gamsey, S.; Miller, A.; Olmstead, M. M.; Beavers, C. M.; Hirayama, L. C.;
Pradhan, S.; Wessling, R. A.; Singaram, B. J. Am. Chem. Soc. 2007, 129, 1278–
1286.
6. (a) Arimori, S.; Bosch, L. I.; Ward, C. J.; James, T. D. Tetrahedron Lett. 2001, 42,
4553–4555; (b) Arimori, S.; Bosch, L. I.; Ward, C. J.; James, T. D. Tetrahedron Lett.
2002, 43, 911–913; (c) Bosch, L. I.; Mahonb, M. F.; James, T. D. Tetrahedron Lett.
2004, 45, 2859–2862.
tem, the two hydroxyl groups of
the less stable five-membered cyclic esters with boronic acid.
However, the additional carbonyl group of the -hydroxyl acid
a-hydroxyl acid could also form
a
may form a new hydrogen bond with the NH group of aniline
branch, which could play an important role for the high selectivity
of the recognition (Scheme 2).
In summary, the two new fluorescent ICT sensors 3a and 3b dis-
played large decrease of fluorescence intensity upon binding with
7. He, J.; Machida, S.; Kishi, H.; Horie, K.; Furukawa, H.; Yokota, R. J. Polym. Sci. A:
Polym. Chem. 2002, 40, 2501–2512.
a
-hydroxy acids. The different position of the amino-group at the
phenyl has a significant effect on the fluorescence properties of
these sensors. We believe that the high selectivity on recognition
for
8. Compound 3a: Yield: 19%. 1H NMR (300 MHz, DMSO-d6): d 9.48 (s, 3H), 7.89 (d,
3H), 7.80–7.84 (m, 9H), 7.69–7.74 (m, 6H), 7.45–7.48 (m, 6H), 7.34 (t, 3H), 4.62
(s, 6H); 13C NMR (75.5 MHz, DMSO-d6): 148.5, 145.2, 141.4, 132.2, 130.1, 129.7,
a-hydroxy acids over most saccharides is due to the additional
127.4, 126.3, 122.4, 117.8, 52.5; IR (KBr): m 3384, 2923, 2854, 1610, 1515, 1460;
hydrogen bonds between the carbonyl groups and NH groups.
ESI/MS (negative): m/z 754.23 ([M+1]À). Compound 3b: Yield: 23%. 1H NMR: d
OH
HO
OH
OH
OH
B
OH
OH
O
R
S
O
B
B
R
OH
O
O
S
O
N
N
NH
O
H
Ar
Ar
Ar
C
A
B
less stable
more stable
Scheme 2. Proposed reaction balance in the buffer.