these two molecules slowly forms instead because the Ni–Ni
bond is at a higher energy level than a Ni–S bond, that is, the
Ni–S bond is more stable than the Ni–Ni bond. Hence, two
molecules slip over each other.22 As shown in Fig. 8, the layer
distance of the green D2 phase (d2 (g)) should be longer than
that of the brown D1 phase (d1 (b)). As can be seen from Fig. 6,
the d2 (g) distance is actually longer than the d1 (b) distance for
all the complexes for n¢10.
Acknowledgements
This work was partially supported by Grant-in Aid for
Research (12129205) by the Ministry of Education, Science,
Sports and Culture of Japan.
References
Thus, the thermochromism (brownAgreen) is attributable to
the slow transformation from the Ni–Ni bonded dimers to the
Ni–S bonded dimers.
1
Part 30: K. Hatsusaka, K. Ohta, I. Yamamoto and H. Shirai,
J. Mater. Chem., 2001, 11, 423.
2
A. M. Giroud-Godquin and P. M. Maitlis, Angew. Chem., Int. Ed.
Engl., 1991, 30, 375; K. Ohta and I. Yamamoto, J. Synth. Org.
Chem. Jpn., 1991, 49, 486.
3.7 Electrochemistry
3
4
5
6
7
A. M. Giroud and U. T. Mueller-Westerhoff, Mol. Cryst. Liq.
Cryst., 1977, 41, 11.
A. M. Giroud and U. T. Mueller-Westerhoff, Mol. Cryst. Liq.
Cryst., 1980, 56, 225.
U. T. Mueller-Westerhoff, A. Nazzal, R. J. Cox and A. M. Giroud,
Mol. Cryst. Liq. Cryst., 1980, 56, 249.
U. T. Mueller-Westerhoff, A. Nazzal, R. J. Cox and A. M. Giroud,
J. Chem. Soc., Chem. Commun., 1980, 497.
P. M. Cotrait, J. Gaultier, C. Polycarpe, A. M. Giroud and
U. T. Mueller-Westerhoff, Acta Crystallogr., Sect. C, 1980, C39,
833.
M. Veber, R. Fugnitto and H. Strzelecka, Mol. Cryst. Liq. Cryst.,
1983, 96, 221.
K. Ohta, A. Takagi, H. Muroki, I. Yamamoto, K. Matsuzaki,
T. Inabe and Y. Maruyama, J. Chem. Soc., Chem. Commun., 1986,
884.
The half-wave potentials E1/2 for the first reduction of these
complexes, Cn–Ni (n~1–12) and CnO–Ni (n~1–12), are listed
in Table 5 with their liquid crystallinity in the right-hand
column. In this table, n shows the number of the carbon atoms
in peripheral chains and n~0 corresponds to the core complex,
bis(diphenyldithiolene)nickel. From this table, it is apparent
that the reduction potentials of these complexes are nearly
constant irrespective of the alkyl or alkoxy chain length. The
values, 20.01 to 20.03 vs. SCE, observed for Cn–Ni (n~1–12)
are somewhat less positive than that of the core complex
(z0.03 V vs. SCE), whereas they are more positive than those
of the analogous complexes, CnO–Ni. The values, 20.05 to
20.07 V vs. SCE, observed for CnO–Ni (n~1–12) are much less
positive than that of the core complex. Thus, the reduction
potentials mainly depend on the types of the substituents. It is
attributable to the more electron donating property of the
alkoxy substituents than that of the alkyl substituents. From
Table 5, we can derive a very interesting relationship between
the mesomorphic property and reduction potential for
changing the alkoxy chain length. The mesomorphic property
of the complexes depends on the alkoxy chain length, whereas
the reduction potential does not. That is to say, we can change
the peripheral chain length to obtain the mesomorphic
properties without changing the electrochemical properties.
This seems to be very useful for the functionalization of
mesogenic compounds.
8
9
10 K. Ohta, A. Takagi, H. Muroki, I. Yamamoto, K. Matsuzaki,
T. Inabe and Y. Maruyama, Mol. Cryst. Liq. Cryst., 1987, 147, 15.
11 M. Veber, P. Davidson, C. Jallabert, A. M. Levelut and
H. Strzelecka, Mol. Cryst. Liq. Cryst., Lett., 1987, 5, 1.
12 A. Takagi, MSc Thesis, Shinshu University, Ueda, 1987, Ch. 1, 2
13 K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc.,
1972, 94, 4374; M. Kumada, K. Tamao and K. Sumitani, Org.
Synth., 1978, 58, 127.
14 N. Sonoda, Y. Yamamoto, S. Murai and S. Tsutsumi, Chem. Lett.,
1972, 229.
15 H. Ema, MSc Thesis, Shinshu University, Ueda, 1988, Ch. 7
16 G. Wenz, Makromol. Chem., Rapid Commun., 1985, 6, 577.
17 K. Ohta, R. Higashi, M. Ikejima, I. Yamamoto and N. Kobayashi,
J. Mater. Chem., 1998, 8, 1979; and references cited therein.
18 K. Ohta, H. Murloki, A. Takagi, I. Yamamoto and K. Matsuzaki,
Mol. Cryst. Liq. Cryst., 1986, 135, 247.
19 K. Ohta, H. Muroki, A. Takagi, K. Hatada, H. Ema, I. Yamamoto
and K. Matsuzaki, Mol. Cryst. Liq. Cryst., 1986, 140, 131.
20 K. Ohta, Y. Inagaki-Oka, H. Hasebe and I. Yamamoto,
Polyhedron, 2000, 19, 276.
21 Z. S. Herman, R. F. Kirchner, G. H. Loew, U. T. Mueller-
Westerhoff, A. Nazzel and M. C. Zerner, Inorg. Chem., 1982, 21,
46.
22 S. Alvarez, R. Vicente and R. Hoffmann, J. Am. Chem. Soc., 1985,
107, 6253; I. Okura, N. Kaji, S. Aono, T. Kita and A. Yamada,
Inorg. Chem., 1985, 24, 453.
4. Conclusion
Two series of Cn–Ni (n~1–12) and CnO–Ni (n~1–12, 14, 16,
18), have been synthesized. It was established that the CnO–Ni
complexes exhibit two differently colored discotic lamellar (DL)
mesophases for n¢10, and that the thermochromism (brown
Agreen) is attributable to the slow transformation from the
Ni–Ni bonded dimers to the Ni–S bonded dimers. The
reduction potential of these complexes does not depend on
the chain length, whereas the mesomorphic property does.
J. Mater. Chem., 2001, 11, 1063–1071
1071