reactions.1a,b There are three processes that have emerged. The
most developed methods are asymmetric organocatalytic direct
aldol reactions3 which have been fruitful since List, Lerner, and
Barbas4 reported the first remarkably successful case of direct
reaction of acetone with aryl aldehydes catalyzed by L-proline.
Another protocol is based on biological catalysts, i.e., enzymes
or abzymes.5 The third method is the protocol catalyzed by chiral
metal complexes.6-8 Among the chiral metal catalysts, Trost’s
dinuclear Zn catalysts8 and Shibasaki’s (S,S)-zinc-zinc-linked-
BINOL complex7c,d are especially efficient, which were broadly
applied to catalyze simple aldol addition of arylketones,7c,8a
methyl vinyl ketone,8f acetone,8c R-hydroxyl aryl ketones,8b,d
and methyl ynones8e to aldehydes as well as nitro aldol reactions
(the Henry reaction).8g-i These facts make zinc-containing chiral
catalysts more promising for various direct aldol additions. To
the best of our knowledge, however, direct asymmetric aldol
reaction between aryl ketones and aryl aldehydes catalyzed by
chiral organometallic complexes has not been reported to date.9
This reaction can generate versatile biologically active diaryl
ꢀ-hydroxyl ketones. Traditionally, these compounds are syn-
thesized by Mukaiyama-type aldol reactions,10 in which pre-
conversion of aryl ketones to more reactive intermediates is
indispensable.11 This situation makes it very interesting to
develop zinc-containing chiral ligands for direct aldol addition
of aryl ketones to aryl aldehydes today. Herein we report our
results on the design and synthesis of novel C2-symmetric
Direct Asymmetric Aldol Reaction of Aryl
Ketones with Aryl Aldehydes Catalyzed by
Chiral BINOL-Derived Zincate Catalyst
Hong Li, Chao-Shan Da,* Yu-Hua Xiao, Xiao Li, and
Ya-Ning Su
Institute of Biochemistry & Molecular Biology, School of
Life Sciences, Lanzhou UniVersity, Lanzhou 730000, China
ReceiVed May 31, 2008
Direct asymmetric aldol reaction of aryl ketones with aryl
aldehydes catalyzed by chiral metal complex is reported for
the first time herein. Two novel semicrown chiral ligands
1a and 1b were synthesized from (S)- and (R)-BINOL,
respectively, and then employed to catalyze the direct
asymmetric aldol addition of aryl ketones to aryl aldehydes.
Introduced with 2.0 equiv of diethylzinc, 1b had higher
enantioselectivity than 1a. Up to 97% yield and up to 80%
enantioselectivity were achieved.
(4) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122,
2395.
(5) (a) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39,
1352. (b) Gijsen, H. J. M.; Qiao, L.; Fitz, W.; Wong, C.-H. Chem. ReV. 1996,
96, 443. (c) Wagner, J.; Lerner, R. A.; Barbas, C. F., III Science 1995, 270,
1797. (d) Dean, S. M.; Greenberg, W. A.; Wong, C.-H. AdV. Synth. Catal. 2007,
349, 1308. (e) Kumagai, N.; Matsunaga, S.; Yoshikawa, N.; Ohshima, T.;
Shibasaki, M. Org. Lett. 2001, 3, 1539.
(6) (a) Kantam, M. L.; Ramani, T.; Chakrapani, L.; Kumar, K. V. Tetrahedron
Lett. 2008, 49, 1498. (b) Paradowska, J.; Stodulski, M.; Mlynarski, J. AdV. Synth.
Catal. 2007, 349, 1041. (c) Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am.
Chem. Soc. 2003, 125, 8706.
(7) (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew.
Chem., Int. Ed. Engl. 1997, 36, 1871. (b) Yoshikawa, N.; Yamada, Y. M. A.;
Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. (c)
Yoshikawa, N.; Kumagai, N.; Mutsunaga, S.; Moll, G.; Ohshima, T.; Suzuki,
T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466. (d) Kumagai, N.;
Matsunaga, S.; Yoshikawa, N.; Ohshima, T.; Shibasaki, M. Org. Lett. 2001, 3,
1539.
The aldol reaction is one of the most important and useful
carbon-carbon bond formation reactions in organic chemistry,1
because it can produce versatile ꢀ-hydroxyl carbonyl com-
pounds, which are key intermediates or synthetic building blocks
of biologically active compounds.2 Therefore, many groups are
now focusing on catalytic asymmetric direct aldol addition
(1) (a) Modern Aldol reactions. Vol. 1: Enolates, Organocatalysis, Bioca-
talysis and Natural Product Synthesis; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, Germany, 2004. (b) Modern Aldol reactions. Vol. 2: Metal Catalysis;
Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany, 2004. (c) Casiraghi, G.;
Zanardi, F.; Appendino, G.; Rassu, G. Chem. ReV. 2000, 100, 1929.
(2) (a) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207. (b) Marshall,
J. A. Chem. ReV. 1996, 96, 31. (c) Mahrwald, R. Chem. ReV. 1999, 99, 1095.
(d) Schinzer, D. In Modern Aldol reactions. Vol. 1: Enolates, Organocatalysis,
Biocatalysis and Natural Product Synthesis; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, Germany, 2004; p 311. (e) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki,
M. Org. Lett. 2003, 5, 733.
(3) For reviews on asymmetric organocatalytic aldol reactions, see: (a)
Guillena, G.; Na´jera, C.; Ramo´n, D. J. Tetrahedron: Asymmetry 2007, 18, 2249.
(b) Tanaka, F.; Barbas, C. F.,III In EnantioselectiVe Organocatalysis; Dalko,
P. I., Ed.; Wiley-VCH: Weinheim,Germany, 2007; p 19. (c) Notz, W.; Tanaka,
F.; Barbas, C. F., III Acc. Chem. Res. 2004, 37, 580. (d) Berkessel, A.; Groger,
H. Asymmetric Organocatalysis - From Biomimetic Concepts to Applications in
Asymmetric Synthesis; Wiley-VCH: Weinheim, Germany, 2004; p 140. (e)
Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N.
Acc. Chem. Res. 2004, 37, 558. (f) Saito, S.; Yamamoto, H. Acc. Chem. Res.
2004, 37, 570. (g) Pellissier, H. Tetrahedron 2007, 63, 9267. (h) Mukherjee, S.;
Yang, J. W.; Hoffmann, S.; List, B. Chem. ReV. 2007, 107, 5471. (i) Palomo,
C.; Oiarbide, M.; Garc´ıa, J. M. Chem. Soc. ReV. 2004, 33, 65.
(8) (a) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003. (b) Trost,
B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. (c) Trost,
B. M.; Silcoff, E. R.; Ito, H. Org. Lett. 2001, 3, 2497. (d) Trost, B. M.; Yeh,
V. S. C. Org. Lett. 2002, 4, 3513. (e) Trost, B. M.; Fettes, A.; Shireman, B. T.
J. Am. Chem. Soc. 2004, 126, 2660. (f) Trost, B. M.; Shin, S.; Sclafani, J. A.
J. Am. Chem. Soc. 2005, 127, 8602. (g) Trost, B. M.; Yeh, V. S. C. Angew.
Chem., Int. Ed. 2002, 41, 861. (h) Trost, B. M.; Yeh, V. S. C.; Ito, H.; Bremeyer,
N. Org. Lett. 2002, 4, 2621. (i) Trost, B. M.; Lupton, D. W. Org. Lett. 2007, 9,
2023.
(9) Only recently was one case of organocatalytic asymmetric direct aldol
reaction of aryl ketone with aryl aldehydes disclosed: Mei, K.; Zhang, S.; He,
S.; Li, P.; Jin, M.; Xue, F.; Luo, G.; Zhang, H.; Song, L.; Duan, W.; Wang, W.
Tetrahedron Lett. 2008, 49, 2681.
(10) Mukaiyama reactions: (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.;
Shina, I. Chem. Lett. 1990, 129; (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama,
T. Chem. Lett. 1990, 1455.
(11) For recent Mukaiyama-type aldol reactions on aryl ketones with aryl
aldehydes, see: (a) Denmark, S. E.; Heemstra, J. R., Jr. Org. Lett. 2003, 5, 2303.
(b) Jankowska, J.; Mlynarski, J. J. Org. Chem. 2006, 71, 1317. (c) Li, H.-J.;
Tian, H.-Y.; Chen, Y.-J.; Liu, L.; Wang, D.; Li, C.-J. AdV. Synth. Catal. 2005,
347, 1247. (d) Ishihara, K.; Kondo, S.; Yamamoto, H. J. Org. Chem. 2000, 65,
9125. (e) Kiyooka, S.; Takeshita, Y.; Tanaka, Y.; Higaki, T.; Wada, Y.
Tetrahedron Lett. 2006, 47, 4453.
7398 J. Org. Chem. 2008, 73, 7398–7401
10.1021/jo801182n CCC: $40.75 2008 American Chemical Society
Published on Web 08/14/2008