Xenobiotic Responsiveness in Arabidopsis
oxide synthases, and allene oxide cyclase (42), the phytopro- between the RXR and agronomically useful herbicide safening
stanes are derived from the spontaneous oxidation of linolenic from SXR and the more commonly encountered general xeno-
acid and to a lesser extent linoleic acid (43). Many of these biotic response.
signaling-active derivatives are unstable and will react with
Acknowledgment—We are grateful to Lesley Edwards for technical
assistance.
GSH and potentially protein-sulfhydryl groups over time (41).
The fact that a reduction in unsaturated fatty acids attenuates
the RXR invoked by fenclorim in Arabidopsis suggests that the
safener must act either in parallel or upstream of oxylipin sig-
naling, potentially through regulating the availability of these
endogenous molecules. However, to date we have been unable
to determine any major effects of fenclorim on OPDA or phy-
toprostane metabolism in planta, suggesting that this safener-
mediated regulation involves a minor subset of these com-
pounds, or operates in a restricted spatiotemporal manner.
Although a link between safening with oxylipin signaling has
been proposed (7), a causative unifying mechanism of action is
yet to be determined. Based on the observations from the cur-
rent study, we can propose three potential mechanisms
whereby xenobiotics could interact with endogenous stress rec-
ognition pathways to elicit an RXR. First, fenclorim or a rapidly
formed downstream metabolite could selectively bind and acti-
vate a signaling protein that normally binds to and thus senses
oxylipins, in both cases presumably through modification of a
reactive cysteine residue. Recent studies have shown that oxy-
lipins selectively alkylate and modify the function of a number
of redox-sensitive cysteinyl-bearing proteins, some of which
are implicated in signaling (41). Second, fenclorim (or a down-
stream metabolite) could activate a minor release of oxylipins
leading to signal elicitation. A candidate enzyme for such bio-
activation would be a lipase with many plants including Arabi-
dopsis, accumulating relatively large amounts of esterified
OPDA and phytoprostanes in lipids (44). If the safeners were to
cause a selective release of such preformed stores through the
up-regulation of hydrolytic enzymes, this would potentially
lead to an RXR. Third, fenclorim (or a downstream metabolite)
could prevent the metabolic deactivation of oxylipins, leading
to their transient accumulation and resulting signal initiation.
fenclorim treatment could transiently increase free oxylipin
levels through inhibition of their enzyme-mediated glutathio-
nylation. However, inconsistencies in the inhibitory versus
safening activity of other compounds in the series do not sup-
ther studies are now required to establish how safeners inter-
cede in oxylipin turnover and signaling. In view of the lack of
discernable disruption in total oxylipin content on safening,
one promising area may be to study the effect of fenclorim on
the intracellular disposition of these endogenous signals
between the cytosol, vacuole, and peroxisomes as mediated by
ATP binding cassette transporters (45, 46). Although our stud-
ies raise additional questions as to how xenobiotics can selec-
tively intercede in intracellular stress signaling pathways, the
use of the fenclorim derivatives in defining structure activity
relationships clearly demonstrates the subtle distinctions
REFERENCES
1. Owen, W. J., and Roberts, T. (2000) in Metabolism of Agrochemicals in
Plants, pp. 211–258, John Wiley and Sons Ltd, London
2. Davies, J., and Caseley, J. C. (1999) Pestic. Sci. 55, 1043–1058
3. Edwards, R., Brazier-Hicks, M., Dixon, D. P., and Cummins, I. (2005) Adv.
Bot. Res. 42, 1–32
4. Zhang, Q., Xu, F., Lambert, K. N., and Riechers, D. E. (2007) Proteomics 7,
1261–1278
5. Baerson, S. R., Sa´nchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Ka-
gan, I. A., Agarwal, A. K., Reigosa, M. J., and Duke, S. O. (2005) J. Biol.
Chem. 280, 21867–21881
6. Rishi, A. S., Munir, S., Kapur, V., Nelson, N. D., and Goyal, A. (2004)
Planta 220, 296–306
7. Riechers, D. E., Kreuz, K., and Zhang, Q. (2010) Plant Physiol. 153, 3–13
8. Scott-Craig, J. S., Casida, J. E., Poduje, L., and Walton, J. D. (1998) Plant
Physiol. 116, 1083–1089
9. Zhang, Q., and Riechers, D. E. (2004) Proteomics 4, 2058–2071
10. DeRidder, B. P., Dixon, D. P., Beussman, D. J., Edwards, R., and Golds-
brough, P. B. (2002) Plant Physiol. 130, 1497–1505
11. DeRidder, B. P., and Goldsbrough, P. B. (2006) Plant Physiol. 140, 167–175
12. Edwards, R., Del Buono, D., Fordham, M., Skipsey, M., Brazier, M., Dixon,
D. P., and Cummins, I. (2005) Z. Naturforsch. Biosci. C. 60, 307–316
13. Dixon, D. P., Hawkins, T., Hussey, P. J., and Edwards, R. (2009) J. Exp. Bot.
60, 1207–1218
14. Smith, A. P., DeRidder, B. P., Guo, W. J., Seeley, E. H., Regnier, F. E., and
Goldsbrough, P. B. (2004) J. Biol. Chem. 279, 26098–26104
15. Dixon, D. P., Davis, B. G., and Edwards, R. (2002) J. Biol. Chem. 277,
30859–30869
16. Harden, D. B., Mokrosz, M. J., and Strekowski, L. (1988) J. Org. Chem. 53,
4137–4140
17. Lee, H. W., Kim, B. Y., Ahn, J. B., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K.,
Lee, S. J., and Yoon, S. S. (2005) Eur. J. Med. Chem. 40, 862–874
18. Liebeskind, L. S., and Srogl, J. (2002) Org. Lett. 4, 979–981
19. Schomaker, J. M., and Delia, T. J. (2001) J. Org. Chem. 66, 7125–7128
20. Brazier-Hicks, M., Evans, K. M., Cunningham, O. D., Hodgson, D. R.,
Steel, P. G., and Edwards, R. (2008) J. Biol. Chem. 283, 21102–21112
21. Loutre, C., Dixon, D. P., Brazier, M., Slater, M., Cole, D. J., and Edwards, R.
(2003) Plant J. 34, 485–493
22. Tusher, V. G., Tibshirani, R., and Chu, G. (2001) Proc. Natl. Acad. Sci.
U.S.A. 98, 5116–5121
23. Dixon, D. P., Cole, D. J., and Edwards, R. (1998) Plant Mol. Biol. 36,
75–87
24. Deng, F., and Hatzios, K. K. (2002) Pestic. Biochem. Physiol. 72, 24–39
25. Maruyama-Nakashita, A., Nakamura, Y., Watanabe-Takahashi, A., Inoue,
E., Yamaya, T., and Takahashi, H. (2005) Plant J. 42, 305–314
26. Cummins, I., Brazier-Hicks, M., Stobiecki, M., Franski, R., and Edwards, R.
(2006) Phytochemistry 67, 1722–1730
27. Farago, S., and Brunold, C. (1990) Plant Physiol. 94, 1808–1812
28. Cummins, I., Bryant, D. N., and Edwards, R. (2009) Plant Biotechnol. J. 7,
807–820
29. Foyer, C. H., and Noctor, G. (2009) Antioxid. Redox Signal. 11, 861–905
30. Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Muel-
ler, M. J., and Berger, S. (2008) Plant Cell 20, 768–785
31. Esch, S. W., Tamura, P., Sparks, A. A., Roth, M. R., Devaiah, S. P., Heinz, E.,
Wang, X., Williams, T. D., and Welti, R. (2007) J. Lipid Res. 48, 235–241
32. McConn, M., and Browse, J. (1996) Plant Cell 8, 403–416
33. Dixon, D. P., and Edwards, R. (2009) J. Biol. Chem. 284, 21249–21256
34. Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C. J., Foresti, R., Alam,
J., and Motterlini, R. (2003) Biochem. J. 371, 887–895
SEPTEMBER 16, 2011•VOLUME 286•NUMBER 37
JOURNAL OF BIOLOGICAL CHEMISTRY 32275