Fig. 2 Schematic views of Atoms in Molecules topology of (A) ‘‘model A’’ and (B) ‘‘model B’’. The blue lines represent the bond paths. The red
and blue balls are the bond critical points of the intra- and intermolecular interactions, respectively. For the sake of clarity, only the electron
density relative to the interactions involving the perchlorate group is displayed. Further details on AIM theory and topology are reported in the
ESI.w
AIM analysis revealed that different interactions contribute to
these values (Fig. 2). In particular two Oꢀ ꢀ ꢀC lone pairꢀ ꢀ ꢀp-
interactions were found between the perchlorate group and the
pentafluorophenol ring in model A, with an overall electron
density at the bond critical point of 0.00660 au. In addition, an
Oꢀ ꢀ ꢀH–C hydrogen bond was also found between the per-
chlorate and the phenoxy ring as displayed in Fig. 2. By
contrast, model B shows one Oꢀ ꢀ ꢀC and one strong Oꢀ ꢀ ꢀN
lone pairꢀ ꢀ ꢀp interactions with the pentafluorophenol and
triazine rings, respectively, the overall electron density being
equal to 0.0165 au (Table S6). Notably, the electron density of
the inter-molecular interactions between the perchlorate and
the pentafluorophenol rings in models A and B are virtually
equivalent (0.00660 vs. 0.00571 au), giving a rationale for the
similar binding energies and therefore the equal probability of
the two perchlorate orientations in the crystal structure.
Supramolecular assemblies are generally stabilized by a
range of weak dispersive interactions. The comprehension of
these various interactions is crucial for the rational design of
supramolecular structures. The present experimental and
theoretical study has clearly shown that l.p.ꢀ ꢀ ꢀp and
anionꢀ ꢀ ꢀp interactions should be considered by the supra-
molecular chemist to build intricate molecular architectures.
We are grateful to the Graduate Research School Combina-
tion ‘‘NRSC Catalysis’’ for financial support.
11. P. de Hoog, P. Gamez, H. Mutikainen, U. Turpeinen and
J. Reedijk, Angew. Chem., Int. Ed., 2004, 43, 5815–5817.
12. M. Mascal, I. Yakovlev, E. B. Nikitin and J. C. Fettinger, Angew.
Chem., Int. Ed., 2007, 46, 8782–8784.
13. A. Garcia-Raso, F. M. Alberti, J. J. Fiol, A. Tasada, M. Barcelo-
Oliver, E. Molins, D. Escudero, A. Frontera, D. Quinonero and
P. M. Deya, Inorg. Chem., 2007, 46, 10724–10735.
14. K. V. Domasevitch, P. V. Solntsev, I. A. Gural’skiy,
H. Krautscheid, E. B. Rusanov, A. N. Chernega and J. A.
K. Howard, Dalton Trans., 2007, 3893–3905.
15. T. J. Mooibroek and P. Gamez, Inorg. Chim. Acta, 2007, 360,
381–404.
16. I. Alkorta, I. Rozas and J. Elguero, J. Am. Chem. Soc., 2002, 124,
8593–8598.
17. P. U. Maheswari, B. Modec, A. Pevec, B. Kozlevcar, C. Massera,
P. Gamez and J. Reedijk, Inorg. Chem., 2006, 45, 6637–6645.
18. O. B. Berryman, F. Hof, M. J. Hynes and D. W. Johnson, Chem.
Commun., 2006, 506–508.
19. M. Egli and S. Sarkhel, Acc. Chem. Res., 2007, 40, 197–205.
20. P. de Hoog, P. Gamez, W. L. Driessen and J. Reedijk, Tetrahedron
Lett., 2002, 43, 6783–6786.
21. A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
22. T. J. Mooibroek, S. J. Teat, C. Massera, P. Gamez and J. Reedijk,
Cryst. Growth Des., 2006, 6, 1569–1574.
23. T. J. Mooibroek, C. A. Black, P. Gamez and J. Reedijk, Cryst.
Growth Des., 2008, 8, 1082–1093.
24. M. P. Waller, A. Robertazzi, J. A. Platts, D. E. Hibbs and
P. A. Williams, J. Comput. Chem., 2006, 27, 491–504.
25. J. van deVondele, R. Lynden-Bell, E. J. Meijer and M. Sprik,
J. Phys. Chem. B, 2006, 110, 3614–3623.
26. J. Cerny and P. Hobza, Phys. Chem. Chem. Phys., 2005, 7,
1624–1626.
27. M. Swart, T. van der Wijst, C. F. Guerra and F. M. Bickelhaupt,
J. Mol. Model., 2007, 13, 1245–1257.
28. P. Hobza and J. Sponer, Chem. Rev., 1999, 99, 3247–3276.
29. P. Hobza and J. Sponer, J. Am. Chem. Soc., 2002, 124,
11802–11808.
30. P. Jurecka and P. Hobza, J. Am. Chem. Soc., 2003, 125,
15608–15613.
31. W. Z. Wang, M. Pitonak and P. Hobza, ChemPhysChem, 2007, 8,
2107–2111.
32. A. Magistrato, A. Robertazzi and P. Carloni, J. Chem. Theory
Comput., 2007, 3, 1708–1720.
33. J. Overgaard, M. P. Waller, R. Piltz, J. A. Platts, P. Emseis,
P. Leverett, P. A. Williams and D. E. Hibbs, J. Phys. Chem. A,
2007, 111, 10123–10133.
Notes and references
1. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond In
Structural Chemistry and Biology, Oxford University Press, New
York, 1999.
2. M. Nishio, M. Hirota and Y. Umezawa, The C–H/p Interaction:
Evidence, Nature and Consequences, Wiley-VCH, New York, 1998.
3. S. K. Burley and G. A. Petsko, Science, 1985, 229, 23–28.
4. J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97, 1303–1324.
5. B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem. Soc.
Rev., 2008, 37, 68–83.
6. P. Gamez, T. J. Mooibroek, S. J. Teat and J. Reedijk, Acc. Chem.
Res., 2007, 40, 435–444.
7. M. Mascal, A. Armstrong and M. D. Bartberger, J. Am. Chem.
Soc., 2002, 124, 6274–6276.
34. X. L. Dong, Z. Y. Zhou, L. J. Tian and G. Zhao, Int. J. Quantum
Chem., 2005, 102, 461–469.
8. D. Quinonero, C. Garau, C. Rotger, A. Frontera, P. Ballester,
A. Costa and P. M. Deya, Angew. Chem., Int. Ed., 2002, 41,
3389–3392.
9. D. Kim, P. Tarakeshwar and K. S. Kim, J. Phys. Chem. A, 2004,
108, 1250–1258.
35. M. Meyer, T. Steinke and J. Suhnel, J. Mol. Model., 2007, 13,
335–345.
36. R. F. W. Bader, Chem. Rev., 1991, 91, 893–928.
37. R. J. Boyd and S. C. Choi, Chem. Phys. Lett., 1986, 129, 62–65.
38. S. J. Grabowski, Chem. Phys. Lett., 2001, 338, 361–366.
39. S. T. Howard and O. Lamarche, J. Phys. Org. Chem., 2003, 16,
133–141.
10. S. Demeshko, S. Dechert and F. Meyer, J. Am. Chem. Soc., 2004,
126, 4508–4509.
ꢁc
This journal is The Royal Society of Chemistry 2008
3386 | Chem. Commun., 2008, 3384–3386