1968, 22, 123; (h) E. Buncel, J. M. Dust and R. A. Manderville,
J. Am. Chem. Soc., 1996, 118, 2072.
system, residual CD2HCN served as chemical shift standard
(1H: δ 1.93 ppm) and lock signal, while spectra recorded in
[2H6]DMSO were referenced to the CD2HSOCD3 peak (δ 2.50
ppm). Chemical shifts are given in ppm; coupling constants are
reported in Hz. Wilmad PP-507 NMR tubes (5 mm) were used
in all experiments. Stock solutions and NMR tubes were
capped with rubber septa and swept out with N2 prior to injec-
tion of the reactants by means of a syringe.
3 (a) Ghosh and M. W. Whitehouse, J. Med. Chem, 1968, 11, 305; (b)
M. J. Strauss, A. DeFusco and F. Terrier, Tetrahedron Lett., 1981,
22, 1945.
4 (a) F. Sanger, Biochem. J., 1945, 39, 507; (b) J. F. Bunnett and
D. H. Hermann, Biochemistry, 1970, 9, 816; (c) M. Barra and
R. H. de Rossi, J. Org. Chem., 1989, 54, 5020; (d) J. M. Dust
and J. M. Harris, J. Polym. Sci., Part A.: Polym. Chem., 1990, 28,
1875.
5 (a) E. Buncel and W. Eggimann, J. Am. Chem. Soc., 1977, 99, 5958;
(b) E. Buncel, J. G. K. Webb and J. F. Wiltshire, J. Am. Chem. Soc.,
1977, 99, 4429; (c) E. Buncel and W. Eggimann, Can. J. Chem., 1976,
54, 2436; (d) E. Buncel, A. Jonczyk and J. G. K. Webb, Can. J.
Chem., 1975, 53, 3761; (e) E. Buncel and J. G. K. Webb, J. Am.
Chem. Soc., 1973, 95, 8470.
Representative room temperature experiment in DMSO.
Transfer of 100 µl of a [2H6]DMSO stock solution of DNBF
(1, 0.5 ) into an NMR tube that contained solvent (295 µl)
and DBB (5 µl from a 1 stock solution) afforded the initial
sample. DBB functioned as the internal integral standard and
was present in any experiment where the singlet for the aromatic
ring did not overlap with signals for adducts. Injection of 1
equiv. of 3,4-DTBPhOK (100 µl of a 0.5 stock solution) initi-
6 E. Buncel, J. M. Dust, A. Jonczyk, R. A. Manderville and I. Onyido,
J. Am. Chem. Soc., 1992, 114, 5610.
7 (a) E. Buncel and J. M. Dust, Can. J. Chem., 1988, 66, 1712;
(b) E. Buncel, R. A. Renfrow and M. J. Strauss, J. Org. Chem., 1987,
52, 488; (c) E. Buncel, J. M. Dust, K. T. Park, R. A. Renfrow and
M. J. Strauss, in Nucleophilicity, eds. J. M. Harris and S. P. McManus,
Adv. Chem. Ser. 215, ACS, Washington, D.C., 1987, pp. 369–378;
(d) R. A. Renfrow, M. J. Strauss, S. Cohen and E. Buncel, Aust. J.
Chem., 1983, 36, 1843; (e) E. Buncel and K. T. Park, in Physical
Organic Chemistry, 1986, ed. M. Kobayashi, Elsevier, Amsterdam,
1987, pp. 247–256.
8 (a) S. M. Shein and O. G. ByvalЈkevich, Zh. Org. Khim., 1972, 8, 328;
(b) S. M. Shein, O. G. ByvalЈkevich and A. D. Khemlinskaya, Zh.
Org. Khim., 1976, 12, 134; (c) V. Machacek, V. Sterba, A. Lycka and
D. Snobl, J. Chem. Soc., Perkin Trans. 2., 1982, 355.
9 R. A. Manderville and E. Buncel, J. Chem. Soc., Perkin Trans. 2.,
1993, 1887.
10 (a) R. A. Manderville and E. Buncel, J. Phys. Org. Chem., 1993, 6,
71; (b) F. Terrier, J. C. Halle, P. MacCormack and M. J. Pouet, Can.
J. Chem., 1989, 67, 503; (c) F. Terrier, R. Goumont, M. J. Pouet and
J. C. Halle, J. Chem. Soc., Perkin Trans. 2, 1995, 1629.
11 F. Terrier, E. Kizillian, J. C. Halle and E. Buncel, J. Am. Chem. Soc.,
1992, 114, 1740.
12 M. J. Strauss, R. A. Renfrow and E. Buncel, J. Am. Chem. Soc.,
1983, 105, 2473.
13 F. Terrier, J. C. Halle, M. J. Pouet and M. P. Simonnin, J. Org.
Chem., 1986, 51, 409.
1
ated the reaction. H NMR spectra were recorded at various
intervals but generally as rapidly as possible (i.e. within 3 min)
at the start of the reaction and then at progressively longer
intervals as the reaction proceeded. The system was typically
monitored until no further change could be detected in the
recorded spectrum.
In a separate experiment, acidification of the reaction mix-
ture (5 µl TFA) was performed after acquisition of an initial
spectrum. Spectra of the acidified solution were recorded
immediately following the addition of trifluoroacetic acid (with-
in 3 min).
Typical low temperature NMR experiment in MeCN–DME
(1:1 v/v). The PhOK stock solution (in [2H3]MeCN :[2H10]-
DME 1:1 v/v) was injected into an NMR tube and the solu-
tion then frozen by immersion in liquid N2. To this frozen
solution was injected 1 equiv. of DNBF solution (prepared in
the same solvent). The resultant frozen mixture (final volume:
500 µl; 0.1 in both components) was placed in a dry ice–
acetone bath, which had been maintained at Ϫ50 ЊC. Once
the contents of the tube had thawed at Ϫ50 ЊC, the com-
ponents were mixed by rapid inversion of the tube. The con-
tents were then frozen again by immersion of the tube in
liquid N2. The sample was transferred to the spectrometer
probe (Ϫ40 ЊC) and spectra were recorded at various inter-
vals. A standard sequence was: 3, 5, 7 and 9 min and then as
warranted by the observed changes in the acquired spectrum.
At the same time the temperature of the probe was gradually
raised to ambient.
14 J. C. Halle, M. P. Simonnin, M. J. Pouet and F. Terrier, Tetrahedron
Lett., 1985, 26, 1307.
15 R. Taylor, Electrophilic Aromatic Substitutions, Wiley, New York,
1990.
16 F. Terrier, J. C. Halle, M. P. Simonnin and M. J. Pouet, J. Org.
Chem., 1984, 49, 4363.
17 E. Buncel, J. M. Dust and F. Terrier, Chem. Rev., 1995, 95,
2261.
18 W. P. Norris, R. J. Spear and W. P. Read, Aust. J. Chem., 1983, 36,
297.
19 F. Terrier, F. Millot and W. P. Norris, J. Am Chem. Soc., 1976, 98,
5883.
Acknowledgements
20 F. Terrier, H. A. Sorkhabi, F. Millot, J. C. Halle and R. Schaal, Can.
J. Chem., 1980, 58, 1155.
21 E. Buncel, J. M. Dust, R. A. Mandervill, K. T. Park and I. Onyido,
Bull. Soc. Chim. Fr., 1988, 361.
22 R. A. Manderville and E. Buncel, J. Am. Chem. Soc., 1993, 115,
8985.
Financial support of this research from the NSERC (Canada)
(E. B.), the American Cancer Society (R. A. M.) and Sir Wilfred
Grenfell College (Principal’s Research Fund, J. M. D.) is grate-
fully acknowledged.
23 (a) E. Buncel, N. Chuaqui-Offermanns, B. K. Hunter and
A. R. Norris, Can. J. Chem., 1977, 55, 2852; (b) F. Terrier,
A. P. Charousse and F. Millot, J. Org. Chem., 1980, 45, 2666.
24 J. M. Dust and E. Buncel, Can. J. Chem., 1994, 72, 218.
25 F. Terrier, M. J. Pouet, E. Kizillian, J. C. Halle, F. Oururquin and
C. Paulmier, J. Org. Chem., 1993, 58, 4696.
26 C. F. Bernasconi and M. C. Muller, J. Am. Chem. Soc., 1978, 100,
5530.
27 E. Buncel, R. M. Tarkka and J. M. Dust, Can. J. Chem., 1994, 72,
1709.
References
1 (a) I. M. Sosonkin, A. Ya. Kaminsky, S. S. Gitis, V. A. Subbotin and
T. K. Polynnikova, Zh. Org. Khim., 1973, 9, 1470; (b) J. F. Bunnett,
Acc. Chem. Res., 1978, 11, 413; (c) R. Bacaloglu, C. A. Bunton and
G. Cerichelli, J. Am. Chem. Soc., 1987, 109, 621; (d) R. Bacaloglu,
A. Blasko, C. A. Bunton, F. Ortega and C. Zucco, J. Am. Chem.
Soc., 1992, 114, 7708.
2 (a) V. N. Drozd and V. N. Knyazev, Izv. Sib. Otd. Akad. Nauk
SSSR, Ser. Khim. Nauk., 1987, 52; (b) E. Buncel, M. R. Crampton,
M. J. Strauss and F. Terrier, Electron-deficient Aromatic- and
Heteroaromatic-base Interactions. The Chemistry of Sigma Anionic
Complexes, Elsevier, Amsterdam, 1984; (c) E. Buncel, The
Chemistry of Functional Groups. Supplement F. The Chemistry of
Amino, Nitro and Nitroso Compounds, ed. S. Patai, Wiley, London,
1982; (d) F. Terrier, Nucleophilic Aromatic Displacement. The
Influence of the Nitro Group, ed. H. Feuer, VCH, New York, 1991;
(e) F. Terrier, Chem. Rev., 1982, 82, 77; (f) G. A. Artamkina,
M. P. Egorov and I. P. Beletskaya, Chem. Rev., 1982, 82, 427;
(g) E. Buncel, A. R. Norris and K. E. Russell, Quart. Rev. London,
28 (a) K. L. Servis, J. Am. Chem. Soc., 1967, 89, 1508; (b) K. L. Servis,
J. Am. Chem. Soc., 1965, 87, 5495.
29 (a) R. A. Chamberlin and M. R. Crampton, J. Chem. Soc., Perkin
Trans. 2., 1995, 1831; (b) R. A. Chamberlin and M. R. Crampton,
J. Chem. Soc., Perkin Trans. 2., 1994, 425; (c) A. R. Norris,
Can. J. Chem., 1969, 47, 2895; (d) E. Buncel, A. R. Norris and
W. Proudlock, Can. J. Chem., 1968, 46, 2759.
30 C. F. Bernasconi, J. Am. Chem. Soc., 1970, 92, 4685.
31 C. F. Bernasconi and K. Howard, J. Am. Chem. Soc., 1982, 104,
7748.
32 R. A. Manderville, J. M. Dust and E. Buncel, unpublished work.
J. Chem. Soc., Perkin Trans. 2, 1997
1025