This work is supported by National Basic Research
Program of China (973 Project, No. 2009CB623603) of
Chinese Ministry of Science and Technology, NSFC
(Nos. 20521415, 20621401 and 50833004).
Notes and references
1 (a) C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater.,
2002, 14, 99; (b) A. R. Murphy and J. M. J. Frechet, Chem. Rev.,
2007, 107, 1066; (c) M. L. Chabinyc, L. H. Jimison, J. Rivnay and
A. Salleo, MRS Bull., 2008, 33, 683.
2 (a) C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct.
Mater., 2001, 11, 15; (b) K. M. Coakley and D. McGehee, Chem.
Mater., 2004, 16, 4533; (c) S. Gunes, H. Neugebauer and
N. S. Sariciftci, Chem. Rev., 2007, 107, 1324.
3 H. Klauk, Organic Electronics: Materials, Manufacturing
and Applications, Wiley-VCH, Weinheim, Germany, 2006.
4 N. B. McKeown, Phthalocyanine Materials, Cambridge University
Press, Cambridge, UK, 1998.
5 (a) Z. N. Bao, A. J. Lovinger and A. Dodabalapur, Adv. Mater.,
1997, 9, 42; (b) Z. N. Bao, A. J. Lovinger and J. Brown, J. Am.
Chem. Soc., 1997, 120, 207.
6 H. B. Wang, F. Zhu, J. L. Yang, Y. H. Geng and D. H. Yan, Adv.
Mater., 2007, 19, 2158.
7 H. B. Wang, D. Song, J. L. Yang, B. Yu, Y. H. Geng and
D. H. Yan, Appl. Phys. Lett., 2007, 90, 253510.
8 D. Song, H. B. Wang, F. Zhu, J. L. Yang, H. K. Tian, Y. H. Geng
and D. H. Yan, Adv. Mater., 2008, 20, 2142.
9 C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
Fig. 4 Output (a) and transfer (b) characteristics of OTFTs based on
OVPc4C8 on polyimide-modified SiO2/Si substrate with an annealing
temperature of 120 1C.
10 J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Funct.
Mater., 2005, 17, 66.
11 J. G. Dai, X. X. Jiang, H. B. Wang and D. H. Yan, Appl. Phys.
Lett., 2007, 91, 253503.
OVPc4C8. Au (40 nm) source and drain electrodes were
deposited on the organic semiconductor layer through a
shadow mask with a channel width (W) of 4000 mm and a
channel length (L) of 150 mm, respectively. Fabrication and
characterization of OTFT devices were both carried out in
ambient conditions. It was found that device performance of
OVPc4C8 depended on dielectric layer modification and
annealing temperature. Thermal annealing at 120 1C gave
the best device performance, consistent with absorption
spectral and thin-film XRD monitoring. With the substrates
modified with octadecyltrichlorosilane (OTS) and PTS, mTFT
12 (a) S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev., 2007,
36, 1902; (b) S. Laschat, A. Baro, N. Steinke, F. Giesselmann,
C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer,
A. Schreivogel and M. Tosoni, Angew. Chem., Int. Ed., 2007, 46, 4832.
13 J. M. Warman, M. P. de Haas, G. Dicker, F. C. Grozema, J. Piris
and M. G. Debije, Chem. Mater., 2004, 16, 4600.
14 C. L. Donley, R. A. P. Zangmeister, X. Wei, B. Minch, A. Drager,
S. K. Cherian, L. LaRussa, B. Kippelen, B. Domercq,
D. L. Mathine, D. F. O’Brien and N. R. Armstrong, J. Mater.
Res., 2004, 19, 2087.
15 J. Locklin, K. Onishi, F. Kaneko, Z. N. Bao and R. C. Advincula,
Chem. Mater., 2003, 15, 1404.
16 (a) R. Li, P. Ma, S. Dong, X. Zhang, Y. Chen, X. Li and
J. Jiang, Inorg. Chem., 2007, 46, 11397; (b) Y. Gao, P. Ma,
Y. Zhang, Y. Bian, X. Li, J. Jiang and C. Ma, Inorg. Chem.,
2009, 48, 45.
17 A. Hirao, T. Akiyama, T. Okujima, H. Yamada, H. Uno, Y. Sakai,
S. Aramaki and N. Ono, Chem. Commun., 2008, 4714.
18 C. Deibel, D. Janssen, P. Heremans, V. De Cupere, Y. Geerts,
M. L. Benkhedir and G. J. Adriaenssens, Org. Electron., 2006, 7, 495.
19 (a) K. Hatsusaka, K. Otha, I. Yamamoto and H. Shirai, J. Mater.
Chem., 2001, 11, 423; (b) K. Hatsusaka, M. Kimura and K. Otha,
Bull. Chem. Soc. Jpn., 2003, 76, 781.
20 (a) R. I. Gearba, A. I. Bondar, B. Goderis, W. Bras and
D. A. Ivanov, Chem. Mater., 2005, 17, 2825; (b) J. Tant,
Y. H. Geerts, M. Lehmann, V. De Cupere, G. Zucchi,
B. W. Laursen, T. Bjørnholm, V. Lemaur, V. Marcq,
A. Burquet, E. Hennebicq, F. Gardebien, P. Viville and
D. Beljonne, J. Phys. Chem. B, 2005, 109, 20315.
values of (2.5 Æ 0.5) Â 10À3 and (6.8 Æ 0.4) Â 10À3 cm2 VÀ1 sÀ1
,
respectively, were realized. Modification with a 100 nm poly-
imide layer resulted in the best device performance. Fig. 4
shows the typical OTFT output and transfer characteristics.
The current–voltage characteristics exhibit standard linear and
saturation regions. The source–drain current scales up with an
increase of the gate voltage (VG). A mTFT up to 0.017 cm2 VÀ1 sÀ1
,
calculated from the saturation regime along with an
on/Ioff of 4 Â 103 and a VT of 2 V have been realized.
I
In summary, we have designed and synthesized a tetraalkyl-
substituted LC Pc derivative, i.e., OVPc4C8, which is capable
of forming highly ordered thin films by simply annealing the
spin-cast films at 120 1C. A mTFT up to 0.017 cm2 VÀ1 sÀ1
along with a low threshold voltage (VT B0 V) has been
demonstrated with a top-contact OTFT device configuration.
High mobility, strong NIR-absorption and ease of preparation
and processing make this class of materials attractive solution
processible organic semiconductors.
21 J. Sleven, T. Cardinaels and K. Binnemans, Liq. Cryst., 2002, 29, 1425.
22 W. Pisula, Z. Tomovic, B. El Hamaoui, M. D. Watson, T. Pakula
and K. Mullen, Adv. Funct. Mater., 2005, 15, 893.
23 K.-Y. Law, J. Phys. Chem., 1985, 89, 2652.
24 F. Tang, C. Zhu and F. Gan, J. Appl. Phys., 1995, 78, 5884.
ꢀc
This journal is The Royal Society of Chemistry 2009
3088 | Chem. Commun., 2009, 3086–3088