G.-X. Liu et al. / Polyhedron 27 (2008) 2327–2336
2335
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (No. 20731004) and the Natural Science Founda-
tion of Education Commission of Anhui Province, China (Nos.
KJ2007B092, KJ2008B004).
3
5
4
2
References
[1] (a) J.L.C. Rowsell, O.M. Yaghi, Angew. Chem., Int. Ed. 46 (2005) 4670;
(b) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi,
Science 300 (2003) 1127;
350
400
450
500
550
600
Wavelength (nm)
(c) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 43 (2004) 2334;
(d) O.M. Yaghi, M. O’Keeffe, N.W. Ockwing, H.K. Chae, M. Eddaoudi, J. Kim,
Nature 423 (2003) 705;
Fig. 5. The emission spectra of 2–5 in the solid state at room temperature.
(e) C. Janiak, J. Chem. Soc., Dalton Trans. (2003) 2781;
(f) M.E. Davis, Nature 417 (2002) 813;
(g) O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511;
(h) M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T. Reineke, M. O’Keeffe, O.M. Yaghi,
Acc. Chem. Res. 34 (2001) 319;
100
(i) D. Maspoch, D.R. Molinaa, J. Veciana, Chem. Soc. Rev. 36 (2007) 770.
[2] (a) S.L. Zheng, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 246 (2003) 185;
(b) S.R. Batten, K.S. Murray, Coord. Chem. Rev. 246 (2003) 103;
(c) L. Carlucci, G. Ciani, D.M. Proserpio, Coord. Chem. Rev. 246 (2003) 247;
(d) A.J. Blake, N.R. Champness, P. Hubberstey, W.S. Li, M.A. Withersby, M.
Schröder, Coord. Chem. Rev. 183 (1999) 117;
80
60
40
20
2
1
3
(e) N.R. Champness, J. Chem. Soc., Dalton Trans. (2006) 877;
(f) A.Y. Robin, K.M. Fromm, Coord. Chem. Rev. 250 (2006) 2127;
(g) C. Kepert, Chem. Commun. (2006) 695.
[3] (a) V.W.W. Yam, K.K.W. Lo, Chem. Soc. Rev. 28 (1999) 323;
(b) Y. Ma, H.Y. Chao, Y. Wu, S.T. Lee, W.Y. Yu, C.M. Che, Chem. Commun. (1998)
2491.
[4] (a) W.H. Bi, R. Cao, D.F. Sun, D.Q. Yuan, X. Li, Y.Q. Wang, X.J. Li, M.C. Hong,
Chem. Commun. (2004) 2104;
(b) A. Thirumurugan, C.N.R. Rao, J. Mater. Chem. 15 (2005) 3852;
(c) X.L. Wang, H.Y. Lin, T.L. Hu, J.L. Tian, X.H. Bu, J. Mol. Struct. 798 (2006) 34;
(d) Y.S. Song, B. Yan, Z.X. Chen, J. Solid State Chem. 179 (2006) 4037;
(e) X.L. Wang, Y.F. Bi, H.Y. Lin, G.C. Liu, Cryst. Growth Des. 7 (2007) 1086.
[5] (a) S.Q. Zang, Y. Su, Y.Z. Li, Z.P. Ni, H.Z. Zhu, Q.J. Meng, Inorg. Chem. 45 (2006)
3855;
4
5
0
100 200 300 400 500 600 700 800 900
T / oC
(b) D.R. Xiao, E.B. Wang, H.Y. An, Y. Li, Z.M. Su, C.Y. Sun, Chem. Eur. J. 12 (2006)
6528.
Fig. 6. TG curve of complexes 1–5.
[6] L.Y. Zhang, G.F. Liu, S.L. Zheng, B.H. Ye, X.M. Zhang, X.M. Chen, Eur. J. Inorg.
Chem. (2003) 2965.
it was stable up to 290 °C. The framework collapsed in the temper-
ature range 290–800 °C before the final formation of a metal oxide.
The TGA curve shows that 3 and 4 are stable up to 300 °C. The
framework collapsed in the temperature range 300–800 °C, sug-
gesting that the organic ligands decompose slowly over a wide
temperature range. The TGA curve of 5 shows that the first weight
loss of 1.51% between 90 and 136 °C corresponds to the loss of the
one lattice water molecules (calcd. 1.57%), and then it is stable up
to 280 °C. The framework collapsed in the temperature range 280–
800 °C, before the final formation of a metal oxide.
[7] (a) W.-B. Lin, O.R. Evans, R.-G. Xiong, Z.-Y. Wang, J. Am. Chem. Soc. 120 (1998)
13272;
(b) W.-B. Lin, Z.-Y. Wang, L. Ma, J. Am. Chem. Soc. 121 (1999) 11249;
(c) O.R. Evans, W.-B. Lin, Chem. Mater. 13 (2001) 3009;
(d) O.R. Evans, W.-B. Lin, Chem. Mater. 13 (2001) 2705.
[8] (a) X.-M. Zhang, M.-L. Tong, X.-M. Chen, Angew. Chem., Int. Ed. 41 (2002)
1029;
(b) X.-M. Zhang, M.-L. Tong, M.-L. Gong, H.-K. Lee, L. Luo, K.-F. Li, Y.-X. Tong, X.-
M. Chen, Chem. Eur. J. 8 (2002) 3187;
(c) J. Tao, Y. Zhang, M.-L. Tong, X.-M. Chen, T. Yuen, C.L. Lin, X.-Y. Huang, J. Li,
Chem. Commun. (2002) 1342.
[9] (a) R. Evans, W. Lin, Cryst. Growth Des. 1 (2001) 9;
(b) R.-G. Xiong, J. Zhang, Z.-F. Chen, X.-Z. You, C.-M. Che, H.-K. Fun, J. Chem.
Soc., Dalton Trans. (2001) 780.
[10] Q. Chu, G.X. Liu, T.-a. Okamura, Y.Q. Huang, W.Y. Sun, N. Ueyama, Polyhedron
27 (2008) 812.
4. Conclusion
[11] (a) F. Calderazzo, F. Marchetti, G. Pampaloni, V. Passarelli, J. Chem. Soc., Dalton
Trans. (1999) 4389;
(b) W.Z. Antkowiak, A. Sobczak, Tetrahedron 57 (2001) 2799.
[12] C. Hiort, P. Lincoln, B. Nordén, J. Am. Chem. Soc. 115 (1993) 3448.
[13] SAINT, Version 6.02a, Bruker AXS Inc., Madison, W1, 2002.
In summary, we have synthesized five novel metal-organic
frameworks based on multi-carboxylate ligands and a chelate li-
gand by hydrothermal reactions. The successful syntheses of the
five complexes indicate that it is promising to build up unusual
architectures via a different reaction pH, thus opening up a new
field in the preparation of metal coordination polymers with po-
tential luminescent properties.
[14] G.M. Sheldrick, SADABS
, Program for Bruker Area Detector Absorption
Correction, University of Göttingen, Göttingen, Germany, 1997.
[15] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of
Göttingen, Göttingen, Germany, 1997.
[16] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, Göttingen, Germany, 1997.
[17] (a) S.Q. Xia, S.M. Hu, J.C. Dai, X.T. Wu, J.J. Zhang, Z.Y. Fu, W.X. Du, Inorg. Chem.
Commun. 7 (2004) 51;
5. Supplementary data
(b) X.J. Zhang, Y.P. Tian, S.L. Li, M.H. Jiang, A. Usman, S. Chantrapromma, H.K.
Fun, Polyhedron 22 (2003) 397;
(c) L.Y. Zhang, G.F. Liu, S.L. Zheng, B.H. Ye, X.M. Zhang, X.M. Chen, Eur. J. Inorg.
Chem. (2003) 2965.
CCDC 675859, 666353, 675860, 675861 and 675862 contain the
supplementary crystallographic data for 1, 2, 3, 4 and 5. These data